Congress passed the Endangered Species Act of 1973 (16 USC 1531 et seq., amended 1978, 1982, 1986, 1988) (ESA) to protect species of plants and animals endangered or threatened with extinction. The National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) share responsibility for the administration of the ESA. NMFS is responsible for most marine and anadromous species including the smalltooth sawfish.

NMFS listed the U.S. distinct population segment (U.S. DPS) of smalltooth sawfish as endangered on April 1, 2003. Section 4(f) of the ESA directs NMFS and FWS to develop and implement recovery plans for species under their jurisdiction, unless such a plan would not promote the species’ conservation. NMFS determined that a recovery plan would promote conservation of the smalltooth sawfish and assembled the Smalltooth Sawfish Recovery Team (SSRT) to develop this recovery plan. The SSRT included smalltooth sawfish scientists and management experts from the state and federal government and the non-governmental sector.

NMFS agrees with the SSRT that the success of the sawfish recovery plan will depend on cooperation from state and federal agencies and a long-term commitment to implementing and enforcing its recommendations.
DISCLAIMER

Recovery plans delineate actions which the available information indicates are necessary for the conservation and survival of listed species. Plans are published by the National Marine Fisheries Service, sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be obtained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Nothing in this plan should be construed as a commitment or requirement that any federal agency obligate or pay funds in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than the National Marine Fisheries Service. They represent the official position of the National Marine Fisheries Service only after they have been signed by the Assistant Administrator. Approved recovery plans are subject to modification as dictated by new information, changes in the species status, and the completion of recovery actions. Please check for updates and revisions at the website below before using.

LITERATURE CITATION SHOULD READ AS FOLLOWS:

ADDITIONAL COPIES MAY BE OBTAINED FROM:

National Marine Fisheries Service
Southeast Regional Office
263 13th Avenue South
Saint Petersburg, Florida 33701

Recovery plans can be downloaded from NMFS’ website:
http://www.nmfs.noaa.gov/pr/recovery/plans.htm
ACKNOWLEDGEMENTS

NMFS gratefully acknowledges the commitment and efforts of the following individuals to the recovery of the smalltooth sawfish. Without their assistance and participation in recovery meetings, this plan would not be possible.

Recovery Team Members:

George H. Burgess
Florida Museum of Natural History

John K. Carlson, Ph.D.
NMFS

Sonja Fordham
The Ocean Conservancy

Julie Morris
Gulf of Mexico Fishery Management Council

Gregg R. Poulakis
Florida Fish and Wildlife Conservation Commission

Additional thanks to the following for their technical assistance, editing, and/or for drafting sections of this document:

Tonya Wiley (MML)
Jose Castro, Ph.D. (NMFS)
Susan Pultz (NMFS)
Jennifer Moore (NMFS)
Vicente Faria (Florida State University)
Jason Seitz
Alan Henningsen (National Aquarium at Baltimore)
Matthew McDavitt (University of Virginia School of Law)
Mike Shirley (Rookery Bay National Estuarine Research Reserve)
Pat O’Donnell (Rookery Bay National Estuarine Research Reserve)

David O’Brien
NMFS

Colin A. Simpfendorfer, Ph.D.
Mote Marine Laboratory (MML)

Thomas W. Schmidt, Ph.D.
National Parks Service

Shelley Norton
NMFS

Amanda Frick (NMFS)
Alexis Meyer (NMFS)
Cheryl Scannell (NOAA)
Daniel O’Brien (NMFS)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFS</td>
<td>American Fisheries Society</td>
</tr>
<tr>
<td>CERP</td>
<td>Comprehensive Everglades Restoration Project</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch per Unit Effort</td>
</tr>
<tr>
<td>DPS</td>
<td>Distinct Population Segment</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>ENP</td>
<td>Everglades National Park</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>FKNMS</td>
<td>Florida Keys National Marine Sanctuary</td>
</tr>
<tr>
<td>FMP</td>
<td>Fisheries Management Plan</td>
</tr>
<tr>
<td>FWC</td>
<td>Florida Fish and Wildlife Conservation Commission</td>
</tr>
<tr>
<td>FWCA</td>
<td>Fish and Wildlife Coordination Act</td>
</tr>
<tr>
<td>FWPCA</td>
<td>Federal Water Pollution Control Act</td>
</tr>
<tr>
<td>FWRI</td>
<td>Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute</td>
</tr>
<tr>
<td>FWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>GCSC</td>
<td>Gulf Coastal Shark Census</td>
</tr>
<tr>
<td>GMFMC</td>
<td>Gulf of Mexico Fisheries Management Council</td>
</tr>
<tr>
<td>HMS</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>HPUE</td>
<td>Harvest per Unit Effort</td>
</tr>
<tr>
<td>IRL</td>
<td>Indian River Lagoon</td>
</tr>
<tr>
<td>IUCN</td>
<td>World Conservation Union</td>
</tr>
<tr>
<td>MML</td>
<td>Mote Marine Laboratory</td>
</tr>
<tr>
<td>MPA</td>
<td>Marine Protected Area</td>
</tr>
<tr>
<td>MPRSA</td>
<td>Marine Protection, Research, and Sanctuaries Act</td>
</tr>
<tr>
<td>MSA</td>
<td>Magnuson-Stevens Fisheries Conservation and Management Act</td>
</tr>
<tr>
<td>MRFSS</td>
<td>Marine Recreational Fisheries Statistics Survey</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
</tr>
<tr>
<td>PAT</td>
<td>Pop-up Archival Transmitter</td>
</tr>
<tr>
<td>PIT</td>
<td>Passive Integrated Transponder</td>
</tr>
<tr>
<td>PSAT</td>
<td>Pop-up Satellite Archival Tags</td>
</tr>
<tr>
<td>PVA</td>
<td>Population Viability Analysis</td>
</tr>
<tr>
<td>SAFMC</td>
<td>South Atlantic Fisheries Management Council</td>
</tr>
<tr>
<td>SFWMD</td>
<td>South Florida Water Management District</td>
</tr>
<tr>
<td>SSIT</td>
<td>Smalltooth Sawfish Implementation Team</td>
</tr>
<tr>
<td>SSRT</td>
<td>Smalltooth Sawfish Recovery Team</td>
</tr>
<tr>
<td>TED</td>
<td>Turtle Excluder Device</td>
</tr>
<tr>
<td>TPWD</td>
<td>Texas Parks and Wildlife Department</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Current Species Status: The U.S. DPS of smalltooth sawfish (*Pristis pectinata*), hereinafter “smalltooth sawfish” or “the species,” was listed as endangered under the ESA on April 1, 2003 (68 FR 15680) in response to a 1999 listing petition from The Ocean Conservancy (formerly the Center for Marine Conservation). Smalltooth sawfish were once prevalent throughout Florida and were commonly encountered from Texas to North Carolina. Currently, smalltooth sawfish can only be found with any regularity in south Florida between the Caloosahatchee River and the Florida Keys. Based on the contraction in range and anecdotal data, it is likely that the population is currently at a level less than 5% of its size at the time of European settlement.

Habitat Requirements and Limiting Factors: Juvenile smalltooth sawfish generally inhabit the shallow coastal waters of bays, banks, estuaries, and river mouths, particularly shallow mud banks and mangrove habitats. Larger animals [males > 106 in (>270 cm) and females > 142 in (>330 cm)] can be found in the same habitat, but are also found offshore at depths up to at least 122 meters.

The primary reason for the decline of the smalltooth sawfish population has been bycatch in various commercial and recreational fisheries. The secondary reason for the decline of the smalltooth sawfish population is habitat loss and degradation. Other threats to the species include entanglement in marine debris, injury from saw removal, pollution, and disturbance of natural behavior by divers and other marine activities.

Life history characteristics are a limiting factor for the species’ ability to recover. Sawfish are slow growing, late maturing, and produce small numbers of young; hence, recovery will take decades, even if all threats are effectively eliminated.

Recovery Strategy: The recovery strategy for smalltooth sawfish addresses rebuilding and monitoring the population of the species relative to the ESA’s definition of endangered and threatened species. The strategy also considered mechanisms for eliminating, reducing, and monitoring the causal listing factors identified in the final rule for the species (the present or threatened destruction, modification, or curtailment of habitat or range; overutilization for commercial, recreational, scientific, or educational purposes; inadequacy of existing regulatory mechanisms; and other natural or manmade factors affecting its continued existence) to ensure that they, along with new threats not present at the time of listing, do not impede recovery of the species. The recovery strategy has three main objectives which include activities to address both the species’ status and the listing factors. The first is to minimize human interactions, and injury and mortality associated with human interactions. The second is to protect and/or restore smalltooth sawfish habitats. The third objective is to ensure smalltooth sawfish abundance increases substantially and reoccupies areas from which they had previously been extirpated. Based on these objectives, the recovery team developed objective, measurable criteria to determine when the recovery objectives can be judged to have been met, and identified specific activities to accomplish the objectives. NMFS must work with federal, state, local, and private entities to monitor the smalltooth sawfish population and to coordinate research and recovery efforts to achieve these objectives.

Recovery Goals, Objectives, and Criteria: The goal of this recovery plan is to provide guidance to the government and the public on actions that should ultimately result in the recovery of smalltooth sawfish and consequent removal of the species from the ESA’s List of Endangered and Threatened Wildlife and Plants. The three recovery objectives are listed below with their associated downlisting and delisting recovery criteria. The plan provides additional detail on how the objectives, criteria, and actions address the species’ status and the causal listing/delisting factors.
1. Minimize human interactions, and injury and mortality associated with human interactions.

Downlisting:

- Effective ongoing programs are in place to educate the public about population status and the prohibitions against capturing, harming, or harassing smalltooth sawfish are in place.

- Safe handling and release guidelines have been developed, adopted, distributed, and are being effectively implemented in all state and Federal fisheries (commercial and recreational) that may interact with smalltooth sawfish within all recovery regions (See Figure 9).

- State and/or Federal fishing regulations specific to smalltooth sawfish are in place to ensure that injury and mortality from commercial and recreational fishing is maintained below or at levels that ensure the population increases at the rate, or stabilizes at the levels, described in the criteria identified in Objective 3.

Delisting:

- All downlisting criteria continue to be met.

- State and/or Federal measures (not including those provided under the ESA) are in place to prohibit harm or possession of smalltooth sawfish unless resulting impacts are appropriately assessed, authorized, and minimized.

- State and/or Federal measures (not including those provided under the ESA) are in place to maintain the population and habitat at levels at or above those required for delisting.

2. Protect and/or restore smalltooth sawfish habitats.

Downlisting:

- At least 95% of mangrove shoreline habitat at the time of listing is maintained and effectively protected in recovery regions G, H and I (See figure 9 for map of Recovery Regions).

- Sufficient mangrove shoreline habitat is available and accessible to support viable subpopulations of juvenile smalltooth sawfish in recovery regions J and K. This level should be a minimum of 25% of the area of mangrove shoreline that existed in 1940, in each of the above recovery regions.

- Sufficient nursery habitat is available and accessible to support a viable subpopulation of juvenile smalltooth sawfish in one additional recovery region (apart from G, H, I, J and K, covered in the first two downlisting criteria). This level should be a minimum of 25% of the area of shoreline habitats that existed in 1940, in this additional recovery region.

- Freshwater flow regimes (including timing, distribution, quality, and quantity) into nursery habitats in recovery regions G, H, I, J, K and the one additional region used to meet the three previous criteria are appropriate to ensure natural behavior (e.g., feeding, resting, and predator
avoidance) by maintaining salinities within preferred physiological limits of juvenile smalltooth sawfish.

- Habitat areas of adult smalltooth sawfish abundance, including those used for aggregation, mating and pupping are identified, mapped, and effectively protected as appropriate.

Delisting:

- All habitat-based downlisting criteria continue to be met.
- Sufficient nursery habitat is available and accessible to support a viable subpopulation of juvenile smalltooth sawfish in three recovery regions in addition to those required for downlisting (G – K, plus four others). This level should be a minimum of 25% of the area of shoreline habitats that existed in 1940, in each of the above recovery regions.
- Freshwater flow regimes (including timing, distribution, quality and quantity) into recovery regions G, H, I, J, K and the four additional used to meet the previous delisting criteria appropriate to ensure natural behavior (e.g. feeding, breeding and pupping) by maintaining salinities within preferred physiological limits of juvenile smalltooth sawfish.

3. Ensure the smalltooth sawfish abundance increases substantially and reoccupies areas from which they had been previously extirpated.

Downlisting:

- In recovery regions G, H, I, J, and K and at least one other recovery region the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] either is increasing at an average annual rate of at least 5% over a 27-year period or is at greater than 80% of carrying capacity.
- Relative abundance of adult smalltooth sawfish in combined recovery regions J through L (east coast of Florida) has increased to a level at least 15-times higher than the level at the time of listing, and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.
- Relative abundance of adult smalltooth sawfish in combined recovery regions F through H (west coast of Florida) has increased to a level at least 15-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.
- Verified records of adult smalltooth sawfish are observed in 12 out of 14 years, with consecutive records occurring in the last 3 years in recovery regions M or N, and in at least one of recovery regions A, B, C, or D.

Delisting:

- In addition to the 6 downlisting recovery regions (G, H, I, J, and K and one additional region), the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] in 3 other recovery regions, at least one of which must be west of Florida, is either increasing at an average annual rate of at least 5% over a 27-year period or at greater than 80% of carrying capacity.
• In recovery regions G, H, I, J, and K and at least 4 other recovery regions, one of which must be west of Florida, the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] is stable or increasing over a period of 14 years following downlisting.

• Relative abundance of adult smalltooth sawfish [males 106 in (> 270 cm) and females 142 in (>360 cm)] in combined recovery regions J through L (east coast of Florida) is at least 20-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

• Relative abundance of adult smalltooth sawfish [males 106 in (> 270 cm) and females 142 in (>360 cm)] in combined recovery regions F through H (west coast of Florida) is at least 20-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

• Verified records of adult smalltooth sawfish are observed in 12 out of 14 years, with consecutive records occurring in the last 3 years, in recovery regions M and N, and in at least two of recovery regions A, B, C or D.

See Section III of the plan, “Recovery Goals and Criteria” for detailed information on the recovery criteria for downlisting and delisting.

Actions Needed: The list of actions below are designed to stop and reverse the downward population trends of the remnant smalltooth sawfish population and minimize the potential for human activities to result in the degradation or destruction of smalltooth sawfish habitat essential to survival and recovery. This list is a subset of all of the actions required for full recovery of the species. A complete list of the required recovery actions can be found in the Implementation Schedule.

• Prevent or reduce mortality of the species in fisheries to ensure their long-term viability.

• Monitor trade to ensure trade in sawfish and sawfish parts does not threaten the long-term viability of the population.

• Minimize interactions, injury, and mortality through outreach and education.

• Reduce threats from research efforts.

• Develop non-ESA protection measures and a post-delisting monitoring plan.

• Determine that nursery habitat of sufficient size and quality exists to enable the recovery of the species.

• Minimize the disruption of natural/historic freshwater flow regimes including timing, quality, and quantity) and maintain or restore water quality.

• Identify and protect the habitats (particularly mating and pupping areas) of adult smalltooth sawfish.
• Investigate the relationship (movements) between the U.S. DPS of smalltooth sawfish and populations in surrounding countries and coordinate conservation and recovery efforts to ensure they do not hinder the U.S. recovery efforts.

• Determine that sufficient numbers of adult smalltooth sawfish exist to ensure recovery.

• Develop a spatially-structured PVA for the species to estimate extinction probabilities.

• Determine that sufficient numbers of juvenile smalltooth sawfish exist to ensure recovery and that sufficient nursery areas are occupied to protect against negative stochastic events.

Date of Recovery: Recovery is expected to take approximately 100 years (4 generations). Recovery could occur around year 2106 if all recovery actions are fully funded and implemented.

Total Cost of Recovery: Approximately $73,855,000 (over 100 years). This total was obtained by calculating the recovery costs in Table 2 Implementation Schedule based on a recovery date of 2106.
TABLE OF CONTENTS

PREFACE ... i.
DISCLAIMER .. ii.
ACKNOWLEDGEMENTS .. iii.
ABBREVIATION LIST .. iv.
EXECUTIVE SUMMARY .. v.

I. BACKGROUND ... I-1
 A. Brief Overview .. I-1
 1. Listing history .. I-1
 2. Recovery planning ... I-2
 B. Description and Taxonomy .. I-3
 C. Distribution and Habitat Use .. I-3
 1. Distribution .. I-3
 New York to Virginia .. I-4
 North Carolina to Georgia ... I-5
 Peninsular Florida ... I-5
 Texas to the Florida Panhandle ... I-6
 2. Habitat use ... I-9
 General habitat use observations ... I-9
 Juvenile habitat use .. I-10
 Adult habitat use .. I-12
 D. Critical Habitat ... I-12
 E. Life History ... I-13
 1. Age and growth ... I-13
 2. Diet and feeding behavior .. I-13
 3. Reproductive biology ... I-13
 4. Life history limitations ... I-14
 F. Abundance and Trends ... I-14
 1. Abundance .. I-14
 2. Trends in abundance .. I-14
 G. Listing/Delisting Factors: Threats Assessment .. I-15
 1. Present or threatened destruction, modification, or curtailment of habitat or range I-19
 Agriculture ... I-20
 Urban development .. I-20
 Commercial activities .. I-20
 Channel dredging ... I-21
 Boating activities ... I-21
 Diversion of freshwater runoff ... I-21
 2. Over-utilization for commercial, recreational, scientific, or educational purposes I-21
 Commercial fisheries ... I-21
 Recreational fisheries ... I-22
 Commercial trade ... I-23
 Public display/aquarium trade .. I-24
 Scientific research ... I-24
 3. Disease or Predation ... I-24
LIST OF FIGURES

Figure 1. Historical World Distribution Map for the Smalltooth Sawfish... I-4
Figure 2. Historic and Current Distribution of Smalltooth Sawfish in the U.S. ... I-8
Figure 3. Latitudinal Distribution of Smalltooth Sawfish (Pristis pectinata)... I-8
Figure 4. Relationship Between Estimated Sawfish Size and Depth of Encounter I-10
Figure 5. Depth Track of a 200 cm Sawfish Tagged at the Marquesas Keys on February 17, 2002 with a Wildlife Computers PAT tag... I-12
Figure 6. Mean Annual Landing of Sawfish per Trawler in Louisiana Waters.. I-15
Figure 7. Preliminary Standardized Relative Abundance of Smalltooth Sawfish Caught by Anglers in The Everglades National Park. .. I-15
Figure 8a: Marine Protected Areas in South East Florida... I-29
Figure 8b: Marine Protected Areas in the Florida Keys .. I-30
Figure 8c: Marine Protected Areas in South West Florida.. I-31
Figure 9. Recovery Regions for Smalltooth Sawfish Along the Gulf of Mexico and U.S. Atlantic Coast ... II-3

LIST OF TABLES

Table 1: Threats assessment for smalltooth sawfish undertaken by the SSRT..I-17
Table 2: Implementation Schedule.. IV-16
I. BACKGROUND
The overall goal of the ESA is to provide a means by which endangered and threatened species and the ecosystems upon which they depend may be conserved. To help achieve this goal, the ESA requires a recovery plan be prepared for each listed species unless such a plan will not promote its conservation.

Recovery plans guide the implementation of actions required to recover listed species to the point at which they are self-sustainable in the wild and can be safely removed from the list of endangered and threatened species. Recovery plans are advisory documents only, and recommendations contained therein are not obligatory. However, failure to implement recovery actions may result in the species not recovering and remaining listed indefinitely or going extinct.

A. Brief Overview
The smalltooth sawfish (*Pristis pectinata*) is one of seven sawfish species that occur worldwide in tropical and sub-tropical rivers, lakes, and coastal areas. Sawfish are related to sharks and share similar life history characteristics. They are long-lived, slow growing, slow to mature, and bear few young. These traits make all sawfish extremely vulnerable to overfishing and slow to recover from depletion. Whereas sawfish were once abundant in many areas around the world, they are now very rare, prompting the World Conservation Union (IUCN) to include all sawfish species as “Critically Endangered” on the IUCN Red List criteria, and the U.S. government in 1997, to propose protecting all sawfish species under the Convention on the International Trade in Endangered Species (CITES). The serious depletion of the U.S. population of smalltooth sawfish was the basis for The Ocean Conservancy’s 1999 petition to list the species as endangered under the ESA, and NMFS’ decision to do so on April 1, 2003 (68 FR 15674).

The smalltooth sawfish has a recovery priority number of seven. The recovery priority number is based on the criteria in the Recovery Priority Guidelines (NMFS 1990, 55 FR 24296). This is based on the magnitude of threats being “moderate”, recovery potential being “low-moderate,” and the potential for economic conflicts while implementing recovery actions.

1. Listing history
On November 30, 1999, NMFS received a petition from The Ocean Conservancy requesting that NMFS list the North American populations of smalltooth sawfish and largetooth sawfish as endangered under the ESA. On March 10, 2000, NMFS published its determination that the petition presented substantial information indicating that listing may be warranted for smalltooth sawfish and initiated a review of the status of this species (65 FR 12959). NMFS also determined that the petition did not present substantial information supporting the listing of largetooth sawfish. Thus NMFS maintained the largetooth sawfish on the candidate species list and requested additional information and comments. In April 2003, NMFS reclassified most candidate species, including largetooth sawfish, as “species of concern.” The term “candidate species” is now reserved only for those species actively under review for possible listing under the ESA. The largetooth sawfish is currently listed on the NMFS “Species of Concern” list which highlights its rare status and promotes collection of additional information.

NMFS completed the smalltooth sawfish status review in December 2000 (NMFS 2000). The status review determined that smalltooth sawfish in U.S. waters comprise a distinct population segment, and that the smalltooth sawfish population is in danger of extinction throughout its range. The status review found the species’ endangered status resulted from four of the ESA’s five causal listing factors. The status review did not determine that the species was endangered due to Disease or Predation. The factors identified in the listing rule are in bold below;

1. The present or threatened destruction, modification, or curtailment of habitat or range.
2. Overutilization for commercial, recreational, scientific, or educational purposes.
3. **Disease or predation.**
4. **Inadequacy of existing regulatory mechanisms.**
5. **Other natural or manmade factors affecting its continued existence.**

Specifically the status review found the following:

Factor 1
- Smalltooth sawfish habitat has been degraded or modified throughout the southeastern U.S. from agriculture, urban development, commercial activities, channel dredging, boating activities, and the diversion of freshwater run-off. While the degradation and modification of habitat is not likely the primary reason for the decline of smalltooth sawfish abundance and their contracted distribution, it has likely been a contributing factor.

Factor 2
- The primary reason for the decline (decrease in abundance) in smalltooth sawfish abundance has been bycatch in various commercial fisheries, including gillnets, otter trawls, trammel nets, and seines. Smalltooth sawfish have also been caught as bycatch and occasionally landed in recreational fisheries.

Factor 4
- Existing federal and state laws, regulations and policies were inadequate to protect smalltooth sawfish, with the possible exception of within the Everglades National Park (ENP), where smalltooth sawfish still regularly occur. There were no federal regulations or conservation plans specifically for the protection of sawfish. With the exception of Florida and Louisiana, smalltooth sawfish could be harvested in state waters. Smalltooth sawfish bycatch in gillnets has likely been reduced due to recent regulations prohibiting or limiting the use of gillnets in state waters, but bycatch in other gears such as trawls still pose a threat to this species.

Factor 5
- Inferences about the life history of the species indicate that it has a slow growth rate, is late to mature, has a long life span, and low fecundity.

2. **Recovery planning**
NMFS assembled the SSRT in September 2003. The team’s mission was to develop this plan to recover the species by using the causal listing factors to developing management actions and measurable criteria to rebuild the species’ population and prevent or minimize impacts of the causal listing factors. When met, the criteria are expected to result in a finding that the species can be safely delisted and removed from the list of endangered and threatened species. The team used the threats and factors that were identified in the final listing rule and any new information on current threats to develop the recovery strategy (objectives, measurable criteria, and recovery actions) for the species. The team developed the plan expecting that when all of the measurable criteria are met the delisting process would result in

1 Alabama prohibited the catch of smalltooth sawfish in 2004.
removal of the species from the list of endangered and threatened species. The delisting analysis will
determine if the species is endangered or threatened because of any of the five causal listing factors.

Since only the US DPS of smalltooth sawfish is listed under the ESA this recovery plan and the recovery
criteria are relevant only to this population. However, smalltooth sawfish that exist outside the U.S. and
other sawfish species around the world face similar threats and may benefit from the plan.

B. Description and Taxonomy
All modern sawfish belong to the Suborder Pristoidea, Family Pristidae, and are represented by two
genera: *Pristis* and *Anoxypristis*. Although they are rays, sawfish appear in some respects to be more
shark-like than ray-like, with only the trunk and especially the head ventrally flattened. All sawfish
snouts are extended as a long, narrow, flattened, rostral blade with a series of transverse teeth along either
edge. The rostrum has a saw-like appearance and hence the name of sawfish.

Species in the genus *Pristis* are separable into two groups according to whether the caudal fin has a
distinct lower lobe or not. The smalltooth sawfish, *Pristis pectinata*, is the sole known representative on
the western side of the Atlantic of the group lacking a defined lower caudal lobe. The group in which the
caudal fin has a lower lobe is similarly represented in the western side of the Atlantic by a single known
species, the largetooth sawfish, *P. perotteti* (alternatively referred to as *P. pristis*). The smalltooth
sawfish is also distinguished from the largetooth sawfish by having the first dorsal fin origin located over
the origin of the pelvic fins (versus considerably in front of the origin of pelvics in the largetooth sawfish)
and by having 20 to 34 rostral teeth on each side of the rostrum (versus 14-23 in largetooth sawfish)
(Bigelow and Schroeder 1953; Thorson 1973; McEachran and Fechhelm 1998; Compagno and Last 1999;
Matthew McDavitt pers. comm.). The rostrum of the smalltooth sawfish is about 1/4 of the total length of
an adult specimen, somewhat longer than the rostrum of largetooth sawfish, which is about 1/5 of its total
length (Bigelow and Schroeder 1953).

The systematic status of sawfishes in general and of *P. pectinata* in particular is still in a state of flux.
Systematic studies addressing the taxonomic status of sawfishes are currently in progress and these may
result in changes to the number of recognized species and their ranges.

C. Distribution and Habitat Use
1. Distribution
The smalltooth sawfish is a tropical marine and estuarine elasmobranch fish (sharks and rays) that has
been reported to have a circumtropical distribution (Figure 1). In the western Atlantic, the smalltooth
sawfish has been reported from Brazil through the Caribbean and Central America, the Gulf of Mexico,
and the Atlantic coast of the United States. The smalltooth sawfish has also been recorded from Bermuda
(Bigelow and Schroeder 1953). Forms of smalltooth sawfish have been reported from the eastern Atlantic
in Europe and West Africa; the Mediterranean; South Africa; and the Indo-West Pacific, including the
Red Sea, India, Burma, and the Philippines (Bigelow and Schroeder 1953; Van der Elst 1981; Compagno
and Cook 1995). Whether populations outside of the Atlantic are truly smalltooth sawfish or closely
related species is unknown (Adams and Wilson 1995). Pacific coast records of smalltooth sawfish off
Central America need confirmation (Bigelow and Schroeder 1953; Compagno and Cook 1995).

The range of the smalltooth sawfish in the Atlantic has contracted markedly over the past century. The
northwestern terminus of their Atlantic range is located in the waters of the eastern United States.
Historic capture records within the U.S. range from Texas to New York (Figure 2). Water temperatures
no lower than 16-18 °C and the availability of appropriate coastal habitat serve as the major
environmental constraints limiting the northern movements of smalltooth sawfish in the western North
Atlantic. As a result, most records of this species from areas north of Florida occur during spring and
summer periods (May to August) when inshore waters reach appropriately high temperatures. Most specimens captured along the Atlantic coast north of Florida have also been large (> 9 ft or 3 m) adults and likely represent seasonal migrators, wanderers, or colonizers from a core population(s) to the south rather than being members of a continuous, even-density population (Bigelow and Schroeder 1953). It is likely that these individuals migrated southward toward Florida as water temperatures declined in the fall, as there is only one winter record from the Atlantic coast north of Florida. The Status Review Team (NMFS 2000) collected and compiled literature accounts, museum collection specimens, and other records of the species to document the changes in distribution and abundance. At about the same time, two groups of researchers began collecting reports of sawfish encounters and captures in Florida to assess the current distribution of this species. On the basis of the Status Review Team’s analysis and the more recent encounter database research (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005) the historic and current distribution of smalltooth sawfish in four regions of the eastern U.S. are described below.

Figure 1. Historical World Distribution Map for the Smalltooth Sawfish. From Burgess et al. (2003)

New York to Virginia

The northernmost U.S. record of the smalltooth sawfish is based upon a 15 ft (4.5 m) specimen from New York taken in July 1782 (Schopf 1788). This early record is the only record of smalltooth sawfish from New York waters. There is always concern with early reports of any species from “New York” because those reports often were based on market specimens that were shipped to New York from other areas. Documented reports of the species from the bordering state of New Jersey, however, and the historical presence of many large, inshore, tropical species in the New York region prior to human-induced environmental degradation suggest the New York record may be valid. Records of smalltooth sawfish from the mid-Atlantic are only from the late 1800’s and early 1900’s. There are two records from New Jersey. Shields (1879) reported a 16 ft (4.8 m), 700 lb. (311 kg) specimen in Grassy Sound near Cape May, and Fowler (1906) noted the occurrence of two sawfish in the ocean off Cape May in or about August 1900. References to smalltooth sawfish in Maryland and Virginia are similarly dated. Uhler and Lugger (1876) reported that it “occasionally enters Chesapeake Bay,” and Fowler (1914) and Truitt and Fowler (1929) reported on a 10 ft (3.0 m) Ocean City specimen. Hildebrand and Schroeder (1928) later
noted that it was rarely taken in lower Chesapeake Bay, “sometimes one or two fish a year and sometimes none.” There have been no reports of smalltooth sawfish in New Jersey, Maryland or Virginia since Hildebrand and Schroeder (1928).

North Carolina to Georgia
Lawson’s (1709) early reference to a “sword-fish” in North Carolina undoubtedly applied to a sawfish since he was primarily describing inshore fishes. There are multiple reports of sawfish in North Carolina waters from the late 1800’s and early 1900’s, some being reiterations of earlier reports: Yarrow (1877: Core Sound, Bogue Sound, New River), Jenkins (1885: Beaufort), Wilson (1900: Beaufort), Smith (1907: Core Sound, Bogue Sound, New River, Beaufort, Cape Lookout), Gudger (1912: Cape Lookout), Cape Lookout), Radcliffe (1916: Cape Lookout), and Gudger (1933: Cape Lookout). Yarrow (1877) indicated the sawfish was “abundant in brackish waters emptying into Bogue and Cove [= Core] Sounds” and that they were “frequently taken in the New River.” Wilson (1900) also noted that it “is frequently taken” in North Carolina. Smith (1907) later reported that “this fish is not rare in the sounds and brackish waters of North Carolina” and that “in the Beaufort region and at Cape Lookout the species is observed almost every year, and some seasons is common.” Since 1915 there have been only three published records of captures in North Carolina: one in 1937 (Fowler 1945), one in 1963 (Schwartz 1984), and a recent report from 1999 (Schwartz 2003). Records from South Carolina and Georgia are sparse. Jordan and Gilbert (1882) and True (1883) were the first publications to report sawfish in South Carolina waters, but there are records of the species in state waters from as early as 1817. The species was taken with some regularity, based on multiple museum and newspaper state records, until about 1938, with the last reported capture in 1958. The single published Georgia record of sawfish, a 3 ft (0.91 m) juvenile, was from March 1908 (Fowler 1945). The only capture since 2002 came from a bottom longline fishery observer who documented the capture of a second Georgia specimen, a ca. 13 ft (4.0 m) adult from depths of 152 - 242 ft (45.6 - 72.6 m) (Burgess unpublished data).

Peninsular Florida
Peninsular Florida has been the U.S. region with the largest numbers of capture records of smalltooth sawfish and apparently is the main area that historically hosted the species year round. The region’s subtropical to tropical climate and availability of desirable habitat, including large expanses of lagoons, bays, mangroves, and nearshore reefs are suitable for the species. Although no longer common, smalltooth sawfish were once characteristic and prominent elements of the inshore Florida ichthyofauna. Recent records of smalltooth sawfish indicate there is a resident reproducing population of smalltooth sawfish in south Florida (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005). Many of the summer-caught smalltooth sawfishes taken along the U.S. East Coast north of Florida and possibly those from Texas to the Florida panhandle may have originated from this group, but supporting data are lacking.

The earliest record of smalltooth sawfish from Florida is an 1834 museum specimen from Key West. Published reports of the species in Florida were common over the next 100 years: Goode (1879a: FL; 1879b: east coast FL; 1884: Indian River, St. Johns River, Everglades, St. Andrews Bay), Jordan and Swain (1884: Cedar Keys), Henshall (1891: Big Gasparilla, FL west coast), Bean (1892: San Carlos Bay), Lonnberg (1894: Punta Gorda), Henshall (1895: Tampa), McCormick in Smith (1896: Biscayne Bay), Evermann and Bean (1898: Eau Gallie, Eden, Stuart in Indian River), Smith (1896: Biscayne Bay), Jordan and Evermann (1900: Pensacola), Evermann and Kendall (1900: east FL), Evermann and Marsh (1900: Indian River), Fowler (1906: FL Keys; 1915: Ft. Pierce), Radcliffe (1916: FL), Nichols (1917: Sandy Key), and Fowler (1945: Plantation Key). Museum records from this time period are also reasonably common. Historically, the Indian River Lagoon (IRL) on the east coast of Florida was an area of smalltooth sawfish abundance. Goode (1884) reported that in “the Indian River and its tributaries the Saw-fish is said to be very common” and Evermann and Bean (1898) noted the sawfish was “an abundant
species,” with a single commercial fisher having captured 300 smalltooth sawfish in a single fishing season. Published and museum records of sawfish are plentiful from the lagoons south of Cape Canaveral throughout this time period. Records also exist from more northerly (off Daytona Beach and Jacksonville) and southerly (Biscayne Bay) peninsular east coast localities during the late 1800’s. Goode (1884) reported that in “the St. John’s River individuals of all sizes...are taken as high up as Jacksonville.” Post-1907 records from this region, however, have been far more limited and occurrences north of the Florida Keys are noteworthy events these days. During a 1973-1976 Florida Bay fish survey Schmidt (1979) reported three juvenile and adult specimens captured along the northern Florida Bay shoreline. Snelson and Williams (1981) did not capture any sawfish in an extensive multi-year study of the IRL system. They speculated that the species’ absence was caused by “heavy mortality associated with incidental captures by commercial fishermen” since the decline seemed to pre-date most of the man-made habitat alterations of the area. Current records from the east coast of Florida remain relatively scarce compared to the west coast, Florida Bay, and the Florida Keys (Figure 3). Most of the encounter records for the east coast are for larger sized animals occurring along the beaches and at offshore reefs, but more recently a few smaller juvenile-sized individuals have been reported inside the IRL system (Simpfendorfer and Wiley 2005; Simpfendorfer unpublished; Poulakis and Seitz unpublished data).

The U.S. region that has always harbored the largest numbers of smalltooth sawfish lies in south and southwest Florida from Charlotte Harbor through the Dry Tortugas. Goode (1884) stated that in “the Everglades these fish are said to be exceedingly abundant.” There has been a continuous and frequent record of sawfish occurrences in the Everglades since the first report in 1834, and the vicinity now serves as the last U.S. stronghold for the species (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005).

Smalltooth sawfish also occur on the west coast of Florida north of Charlotte Harbor, but historically appear to never have been as common in this region as in the east coast lagoons and south Florida. One of the earliest (1883) published records from the west coast was reported in 1883 from the Cedar Keys off the northwestern Florida peninsula. Other 1800’s captures were documented in Tampa Bay and in the southwest coast off Charlotte Harbor and San Carlos Bay. Henshall (1895) relates reports of hundreds occurring on the Gulf coast of peninsular Florida. Records of capture since that time period have been limited. There were only four documented captures of sawfish from the area north of Charlotte Harbor from 1966 to 1999: in Waccassassa Bay (1990), off Crystal River (1972 and 1983), and in Tampa Bay (1999). The recent work to document sawfish encounters has increased the numbers of reported occurrence in the upper half of the west coast of the Florida Peninsula (Figure 3).

Texas to the Florida Panhandle
Records of smalltooth sawfish in the Gulf of Mexico from Texas to the Florida Panhandle exhibit a similar seasonal pattern of occurrence - more than two-thirds of the records are from April through August. While less common, winter records from the northern Gulf of Mexico (including juveniles) do suggest that at least a portion of the population may have been resident year-round in the region. However, many of the sawfish that occurred in this region may have originated from Peninsular Florida and possibly Mexico. While smalltooth sawfish historically occurred in Mexican waters, there is no information to suggest that there is currently a resident population remaining in Mexican waters. Smalltooth sawfish were described as “abundant” by Jordan and Evermann (1896) and “common” by Breder (1952) in the Gulf of Mexico. These authors may have been a bit generous in attributing these levels of abundance, as the records of smalltooth sawfish in this area are substantially fewer than in waters off peninsular Florida. Nevertheless, smalltooth sawfish apparently were more common in the Texas and northern Gulf region than in the Atlantic area north of Florida.
The smalltooth sawfish was first recorded within this region by Rafinesque (1820) in the lower Mississippi River upstream as far as the Red River, Arkansas (his report of the species in the Ohio River is thought to be erroneous). Numerous records of smalltooth sawfish exist from the Gulf of Mexico: Goode and Bean (1882), Jordan and Gilbert (1883), Jordan (1886), Evermann and Kendall (1894: Galveston), Jordan and Evermann (1900: Pensacola), Gowanchloch (1932: LA), Gunter (1936: LA), Baughman (1943: TX), and Boschung (1957, 1993: AL). Baughman (1943) reported that smalltooth sawfish were “frequently taken” and “plentiful” in Texas waters. Bigelow and Schroeder (1953) later regarded smalltooth sawfish as “abundant” in Texas. As recently as the late 1950’s sawfish were characterized as being “not uncommon” in Alabama waters (Boschung 1957), and recreational fishers reportedly took “many sawfish” prior to the 1960’s in Texas (Caldwell 1990). However, smalltooth sawfish in the northern and western Gulf of Mexico have become rare in the last 30 years. Since 1971, there have been only three published or museum reports of smalltooth sawfish captured from this region, and all have been from Texas (1978, 1979, 1984 – see NMFS 2000 [status review]). Recent studies to document encounters with smalltooth sawfish since 1990 have yielded only a handful of records. The MML database has a single verified record from Texas and a single record from Louisiana, and several from the Florida Panhandle (Simpfendorfer and Wiley 2005; Simpfendorfer unpublished data). Most records from the Panhandle are juveniles, from all times of the year.

Smalltooth sawfish also occur on the west coast of Florida north of Charlotte Harbor, but historically appear to never have been as common in this region as in the east coast lagoons and south Florida. One of the earliest (1883) published records from the west coast was reported in 1883 from the Cedar Keys off the northwestern Florida peninsula. Other 1800’s captures were documented in Tampa Bay and in the southwest coast off Charlotte Harbor and San Carlos Bay. Henshall (1895) relates reports of hundreds occurring on the Gulf coast of peninsular Florida. Records of capture since that time period have been limited. There were only four documented captures of sawfish from the area north of Charlotte Harbor from 1966 to 1999: in Waccassassa Bay (1990), off Crystal River (1972 and 1983), and in Tampa Bay (1999). The recent work to document sawfish encounters has increased the numbers of reported occurrence in the upper half of the west coast of the Florida Peninsula (Figure 3).
Figure 2. Historic and Current Distribution of Smalltooth Sawfish in the U.S. From Burgess et al. (2003)

Figure 3. Latitudinal Distribution of Smalltooth Sawfish (*Pristis pectinata*) Encounters on the East and West Coasts of Florida, 1998-2004. The map of Florida is adjacent for orientation only. From Simpfendorfer and Wiley (2005).
2. Habitat use
At the time of listing The Status Review document (NMFS 2000) summarized smalltooth sawfish’s habitat use in the following way:

“This sawfish in general inhabit the shallow coastal waters of most warm seas throughout the world. They are found very close to shore in muddy and sandy bottoms, seldom descending to depths greater than 32 ft (10 m). They are often found in sheltered bays, on shallow banks, and in estuaries or river mouths.”

In the years since the status review additional research on habitat use by smalltooth sawfish has been undertaken. This research has revealed a more complex pattern of habitat use than previously known, with different life history stages having different patterns of habitat use. Ongoing research will undoubtedly inform recovery efforts in the future.

A variety of methods have been applied to studying habitat use patterns of smalltooth sawfish, including acoustic telemetry (Simpfendorfer 2003), acoustic monitoring (Simpfendorfer, unpublished data), public encounter databases (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005), and satellite archival tagging (Simpfendorfer and Wiley 2005b). The majority of this research has been targeted at juvenile sawfish, but some information on adult habitat use has also been obtained.

General habitat use observations
Encounter databases have provided some general insight into the habitat use patterns of smalltooth sawfish. Poulakis and Seitz (2004) reported that where the substrate type of encounters was known 61% were on mud, 11% on sand, 10% seagrass, 7% limestone, 4% rock, 4% coral reef, and 2% sponge. Simpfendorfer and Wiley (2005) reported closer associations between encounters and mangroves, seagrasses, and the shoreline than expected at random. Encounter data have also demonstrated that smaller smalltooth sawfish occur in shallower water, and larger sawfish occur regularly at depths greater than 32 ft (10 m). Poulakis and Seitz (2004) reported that almost half of all sawfish < 9 ft (3 m) in length were found in water less than 32 ft (10 m) deep and 46% of encounters with adult sawfish [males >106 in (270 cm), females > 142 in (360 cm)] in Florida Bay and the Florida Keys occurred at depths between 229 to 400 ft (70 to 122 m). Simpfendorfer and Wiley (2005) also reported a substantial number of larger sawfish in depths greater than 32 ft (10 m). They demonstrated a statistically significant relationship between the estimated size of sawfish and depth (Figure 4), with smaller sawfish on average occurring in shallower waters than large sawfish.

Encounter data has also identified river mouths as areas where many people observe sawfish. Seitz and Poulakis (2002) noted that many of the encounters occurred at or near river mouths in southwest Florida. Simpfendorfer and Wiley (2005) reported a similar pattern of distribution along the entire west coast of Florida. It is unclear whether this observation represents a preference for river mouths because of physical characteristics (e.g., salinity) or habitat (e.g., mangroves or prey) factors.
Juvenile habitat use

Very small juveniles < 39 in (100 cm)

Very small sawfish are those that are less than 39 in (100 cm), and usually between one and two years old. Like all elasmobranches of this age they are likely to experience relatively high levels of mortality due to factors such as predation (Heupel and Simpfendorfer 2002) and starvation (Lowe 2002). Many elasmobranches utilize specific nursery areas that have reduced numbers of predators and abundant food resources (Simpfendorfer and Milward 1993). Acoustic tracking results for very small smalltooth sawfish indicate that depth and red mangrove root systems are potentially important in helping them avoid predators (Simpfendorfer 2003). At this size smalltooth sawfish spend the vast majority of their time on shallow mud or sand banks that are less than 1 ft (30 cm) deep. Since water depth on these banks varies with the tide, the movement of the very small sawfish appears to be directed towards maintaining their presence in shallow water. It is hypothesized that by occurring in these very shallow areas the sawfish restrict the access of their predators (mostly sharks) and so increase survival. The dorso-ventrally compressed body shape helps them in inhabiting these shallow areas, and they can often be observed swimming in only a few inches of water.

The use of red mangrove prop root habitat is also likely to aid very small sawfish in avoiding predators. Simpfendorfer (2003) observed very small sawfish moving into prop root habitats when shallow habitats were less available (especially at high tide). One small animal tracked over three days moved into a small mangrove creek on high tides when the mud bank on which it spent low tide periods was inundated at depths greater than 1 ft (30 cm). While in this creek it moved into areas with high prop root density. The complexity of the prop root habitat is likely to restrict the access of predators and so protect the sawfish.

Very small sawfish show high levels of site fidelity, at least over periods of days and potentially for much longer. Acoustic tracking studies have shown that at this size sawfish will remain associated with the same mud bank over periods of several days. These banks are often very small and daily home range sizes can be of the magnitude of 100 – 1000 m² (Simpfendorfer 2003). The longer-term fidelity to these sites, however, is poorly understood and there is some suggestion from acoustic monitoring data that these sawfish move to different locations (probably with the same habitat characteristics) after periods of residency from a few weeks to a few months (Simpfendorfer unpublished data).
Small juveniles 39-79 in (100 - 200 cm)

Small juveniles have many of the same habitat use characteristics seen in the very small sawfish. Their association with very shallow water (< 1 ft deep) is weaker, possibly because they are better suited to predator avoidance due to their larger size and greater experience. They do still have a preference for shallow water, remaining in depths mostly less than 3 ft (90 cm). They will, however, move into deeper areas at times. One small sawfish acoustically tracked in the Caloosahatchee River spent the majority of its time in the shallow waters near the riverbank, but for a period of a few hours it moved into water 4-6 feet deep (Simpfendorfer 2003). During this time it was constantly swimming, a stark contrast to active periods in shallow water that lasted only a few minutes before resting on the bottom for long periods.

Site fidelity has been studied in more detail in small sawfish. Several sawfish approximately 59 in (150 cm) in length fitted with acoustic tags have been relocated in the same general areas over periods of several months, suggesting a high level of site fidelity (Simpfendorfer 2003). The daily home ranges of these animals are considerably larger (1 - 5 km²) than for the very small sawfish and there is less overlap in home ranges between days. The recent implementation of acoustic monitoring systems to study the longer term site fidelity of sawfish has confirmed these observations, and also identified that changes in environmental conditions (especially salinity) may be important in driving changes in local distribution and, therefore, habitat use patterns (Simpfendorfer, unpublished data).

Large juveniles >79 in (200cm)

There is little data on the habitat use patterns of large juvenile sawfish. No acoustic telemetry or acoustic monitoring studies have examined this size group. Thus there is no detailed tracking data to identify habitat use and preference. However, some data are available from the deployment of pop-up archival transmitting (PAT) tags. These tags record depth, temperature and light data which is stored on the tag until it detaches from the animal, floats to the surface and sends data summaries back via the ARGOS satellite system. More detailed data can be obtained if the tag is recovered. A PAT tag deployed on a 79 in (200 cm) sawfish in the Marquesas Keys collected 120 days of data. The light data indicated that the animal had remained in the general vicinity of the outer Keys (more detailed location data is not available) for this entire period. Depth data from the tag indicated that this animal remained in depths less than 17 ft (5 m) for the majority of this period, making only two excursions to water up to 50 ft (15 m) (Figure 5). There is no information on site fidelity in this size class of sawfish. More data is needed from large juveniles before conclusions about their habitat use and preferences can be made.
Adult habitat use

Information on the habitat use of adult smalltooth sawfish comes from encounter data and from PAT tags. The encounter data suggests that adult sawfish occur from shallow coastal waters to deeper shelf waters. Poulakis and Seitz (2004) observed that nearly half of the encounters with adult-sized sawfish [males > 106 in (270 cm) and females > 142 in (360 cm)] in Florida Bay and the Florida Keys occurred in depths from 229 to 400 ft (70 to 122 m). Simpfendorfer and Wiley (2005) also reported encounters in deeper water off the Florida Keys, noting that these were mostly reported during winter. There is little information on the habitat use patterns of the adults from the encounter data.

PAT tags have been successfully deployed on several sawfish and have provided some data on movements and habitat use. One large mature female was fitted with a tag near East Cape Sable in November 2001. The tag detached from this animal 60 days later near the Marquesas Keys, a straight-line distance of 80 nautical miles (148 km). The data from this tag indicated that it was most likely to have traveled across Florida Bay to the Florida Keys and then along the island chain until it reached the outer Keys. The depth data indicated that it spent most of its time at depths less than 30 ft (10 m), but that once it arrived in the outer Keys it made excursions (1-2 days) into water as deep as 180 ft (60 m).

There is limited data available on the site fidelity of adult sawfish. Seitz and Poulakis (2002) reported that one adult-sized animal with a broken rostrum was captured in the same location over a period of a month near Big Carlos Pass suggesting that they may have some level of site fidelity for relatively short periods. However, the occurrence of seasonal migrations along the U.S. east coast also suggests that adults may be more nomadic than the juveniles with their distribution controlled, at least in part, by water temperatures.

D. Critical Habitat

NMFS stated in the smalltooth sawfish listing document (68 FR 15674; April 1, 2003) that critical habitat for the species was not determinable at the time of listing. NMFS also stated the need to continue ongoing research to determine the habitat use requirements of smalltooth sawfish, and in particular to attempt to identify smalltooth sawfish nursery and breeding areas. NMFS is currently completing an
analysis of the data available on the species’ habitat requirements. A proposed critical habitat rule for smalltooth sawfish will be published once this analysis is complete.

E. Life History
1. Age and growth
Smalltooth sawfish are generally about 2.5 feet (70 - 80 cm) long at birth (Simpfendorfer 2002) and may grow to a length of 18 feet (540 cm) or greater (Bigelow and Schroeder 1953). Individuals have been maintained in public aquaria for up to 20 yrs (Cerkleski pers. comm. 2000). To date, no formal studies on the age and growth of wild smalltooth sawfish have been conducted. However, the rate of growth of captive smalltooth sawfish has been reported. Bohoroquez (2001) reported three specimens in Colombia grew at an average rate of 7.7 in/year (19.6 cm) [the three animals grew from 33 in to 126 in (84 cm to 320 cm) in 12 years]. In a more comprehensive study, Clark et al. (2004) reported growth rates of 16 captive smalltooth sawfish in North American aquaria. They reported an average growth rate of 13.9 cm/year for animals ranging in size from 31 in to 162 in (80 cm to 412 cm). Using a maximum likelihood method they estimated von Bertalanffy growth parameters of \(L_\infty = 413 \text{ cm}, K = 0.067 \text{ yr}^{-1} \) and \(t_0 = -2.76 \text{ yr} \). Apart from captive animals, little is known of the age parameters (age specific growth rates, age at maturity, and maximum age). Simpfendorfer (2000) estimated age at maturity between 10 and 20 years, and a maximum age of 30 to 60 yr. Based on their growth parameters Clark et al. (2004) estimated an age at maturity of 19 yr for males and 33 yr for females. The limited data from other sawfish species supports these magnitudes of values for age and growth parameters. For example, Tanaka (1991) estimated growth of *Pristis microdon* of 7 in/year (18 cm) for juveniles, a maximum age of 44 yrs, and growth coefficients (K) of 0.047-0.066 yr-1.

2. Diet and feeding behavior
Bigelow and Schroeder (1953) reported that sawfish in general subsist chiefly on small schooling fish, such as mullets and clupeids. Bigelow and Schroeder also reported that they feed to some extent on crustaceans and other bottom dwelling inhabitants. Breder (1952), in summarizing the literature on observations of sawfish feeding behavior, noted that they attack fish by slashing sideways through schools, and often impale the fish on their rostral teeth. These are subsequently scraped off the teeth by rubbing them on the bottom and then ingested whole. The oral teeth of sawfish are ray-like, having flattened cusps that are better suited to crushing or gripping. The literature also contains reports that the saw is used as a defensive weapon. This has led some authors to suggest a more offensive weapon, with sawfish battling with their saws. Such behavior is unlikely, and as Norman and Fraser (1937) noted, “the saw may occasionally be used as a defensive weapon, but as a general rule its purpose is to obtain food.”

3. Reproductive biology
As in all elasmobranchs, fertilization in smalltooth sawfish is internal. Development in sawfish is believed to be ovoviviparous. The embryos of smalltooth sawfish, while still bearing the large yolk sac, already resemble adults relative to the position of their fins and absence of the lower caudal lobe. During embryonic development the rostral blade is soft and flexible. The rostral teeth are also encapsulated or enclosed in a sheath until birth. Shortly after birth, the teeth become exposed and attain their full size proportionate to the size of the saw. The size at birth is approximately 31 in (80 cm), with the smallest free-living specimens reported during field studies in Florida being 30 – 33 in (77 - 84 cm) (Simpfendorfer, unpublished data). Bigelow and Schroeder (1953) reported gravid females carry 15-20 embryos. However, the source of their data is unclear and may represent an over-estimate of litter size. Studies of largetooth sawfish in Lake Nicaragua (Thorson 1976) report brood sizes of 1-13 individuals, with a mean of 7.3 individuals. The gestation period for largetooth sawfish is approximately 5 months and females likely produce litters every second year. Although there are no such studies on smalltooth sawfish, its similarity in size and habitat to the largetooth sawfish implies that their reproductive biology may be similar.
4. Life history limitations
Using a demographic approach and life history data for smalltooth sawfish and similar species from the literature, Simpfendorfer (2000) estimated intrinsic rates of natural population increase as 0.08 to 0.13 year\(^{-1}\) and population doubling times from 5.4 years to 8.5 years. These low intrinsic rates of population increase are associated with the life history strategy known as “k-selection.” K-selected animals are usually successful at maintaining relatively small, persistent population sizes in relatively constant environments. Consequently, they are not able to respond effectively (rapidly) to additional and new sources of mortality resulting from changes in their environment. Musick (1999) and Musick et al. (2000) noted that intrinsic rates of increase less than ten percent were low, and such species are particularly vulnerable to excessive mortalities and rapid population declines, after which recovery may take decades. As such, smalltooth sawfish populations will recover slowly from depletion, confounding recovery efforts. Simpfendorfer (2000) concluded that recovery was likely to take decades or longer depending on how effectively sawfish could be protected.

F. Abundance and Trends
1. Abundance
The section on distribution (C) has documented the general observations of sawfish abundance in four regions of the U.S. east coast and Gulf of Mexico. That sawfish were once common inhabitants of most of these areas is clear from these descriptions. It is also clear that the abundance of smalltooth sawfish in U.S. waters has decreased dramatically over the past century.

2. Trends in abundance
There are few long-term abundance data sets that include smalltooth sawfish. One data set from shrimp trawlers off Louisiana from the late 1940s through the 1970s (Figure 6) suggests a rapid decline in the species from the period 1950-1964. However, this data set has not been validated nor subjected to statistical analysis to correct for factors unrelated to abundance.

The Everglades National Park has established a fisheries monitoring program based on sport fisher dockside interviews since 1972 (Schmidt et al. 2000). A preliminary analysis of these data using a log-normal generalized linear model to correct for factors unrelated to abundance (e.g., change in fishing practices) indicate a slight increasing trend in abundance for smalltooth sawfish in the ENP (Carlson et al. in prep.). From 1989-2002, smalltooth sawfish relative abundance has increased by about 3-6% per year (Figure 7).
Figure 6. Mean Annual Landing of Sawfish per Trawler in Louisiana Waters. From Simpfendorfer (2002).

Figure 7. Preliminary Standardized Relative Abundance of Smalltooth Sawfish Caught by Anglers in the Everglades National Park. Standardized abundance is the solid black line and upper and lower 95% confidence intervals are dotted lines (From unpublished Carlson 2004).

G. Listing/Delisting Factors: Threats Assessment
As part of the recovery planning process, threats comprising the listing factors leading to the species’ endangered status have been assessed with regard to their geographic extent, severity, life stage affected, and responsiveness to management. The more critically the factors/threats can be assessed, the more refined and targeted the recovery strategy can be, increasing the probability for successful recovery. A threats assessment includes consideration of both natural and human threats, which can result from either intentional or unintentional actions. The current or potential severity of each threat on the species
is affected by a variety of characteristics of that threat including the immediate or long-term impact on the species (e.g., whether the threat is lethal or adds some stress to the species), the geographic extent of the threat (i.e., how many populations are affected by the threat) and the consideration of the specific life stage(s) affected by that threat. Generally, the greater the geographic extent of a threat, the higher the concern over that specific threat, and the later in life that a threat impacts the species, the greater the effect to the persistence and recovery of the species overall. However, there are exceptions to both of these cases.

An assessment of an individual threat not only includes consideration of its severity, but also the responsiveness of that threat to potential management actions and the feasibility of implementing those actions. While there may be concern over a particular threat to a species, if there are no effective measures that can be implemented to minimize or mitigate that threat, then abatement of this threat may not be a high priority recovery action. The ability to implement management actions to address a threat and the likelihood that those actions will be effective are critical considerations when formulating a strategy for the recovery of a listed species.

An assessment of threats must also recognize the interrelationship among various threats. There may be synergistic effects that must be taken into consideration. For example, alteration of freshwater flow leads to greater impacts on juvenile development as well as habitat degradation, resulting in more of a significant threat to the species. Evaluation of the individual threats in isolation may lead to an underestimate of their impact on smalltooth sawfish. Attention needs to be paid to cumulative impacts of threats or interrelationships between threats in order to ensure an accurate assessment.

Table 1 lists the source of stress and its associated listing factor for the threats identified for the smalltooth sawfish, as determined by the SSRT. The table also identifies the severity and restoration feasibility for each threat. Following the threats tables is a narrative that describes many of these threats in more detail. This narrative is largely based on the work of the Status Review Team.
Table 1: Threats assessment for smalltooth sawfish undertaken by the SSRT. The listing factors are listed in the Listing History section of this document. The threats listed in the table include those identified at the time of listing and current threats. The threat score was determined by assigning a value to both the severity and restoration feasibility (low-1, medium-2, and high-3) and summing. Higher score values indicate potential priority threats (i.e. those that pose the greatest risk to the population and can be mitigated effectively). The threats associated with fishing have higher scores because they may occur more frequently and their effects can be lethal.

<table>
<thead>
<tr>
<th>Stress</th>
<th>Listing Factor</th>
<th>Threat</th>
<th>Severity</th>
<th>Restoration feasibility</th>
<th>Score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisheries interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury from hooking/longline gear entanglement</td>
<td>2</td>
<td>Longline fisheries</td>
<td>Medium</td>
<td>High</td>
<td>5</td>
<td>Can be mitigated with – education, dehookers, gear cutters, corrodible hooks, closed areas, safe handling and release guidelines, etc.</td>
</tr>
<tr>
<td>Injury from trawl entanglement</td>
<td>2</td>
<td>Shrimp trawl fisheries</td>
<td>High</td>
<td>Medium</td>
<td>5</td>
<td>Mitigation: time/area closures, education, tow times, observer information</td>
</tr>
<tr>
<td>Injury from drift gillnet entanglement</td>
<td>2</td>
<td>Drift fishery</td>
<td>Low</td>
<td>High</td>
<td>4</td>
<td>Mitigation – very small fishery, low interaction as nets not on bottom, has good observer coverage</td>
</tr>
<tr>
<td>Injury from entanglement in bottom gillnets</td>
<td>2</td>
<td>Bottom fisheries</td>
<td>Medium</td>
<td>Medium</td>
<td>4</td>
<td>Already ban in most states through historic range (esp. Florida), still gillnets in federal waters off parts of Florida and some other states (e.g. ocean shad)</td>
</tr>
<tr>
<td>Injury from entanglement in cast nets</td>
<td>2</td>
<td>Castnetting (recreational and commercial)</td>
<td>Low</td>
<td>High</td>
<td>4</td>
<td>Education on safe release</td>
</tr>
<tr>
<td>Injury from entanglement in trap float lines</td>
<td>2</td>
<td>Blue crab, stone crab and lobster trap fisheries</td>
<td>Low</td>
<td>High</td>
<td>4</td>
<td>Education on safe release</td>
</tr>
<tr>
<td>Injury from hooking/hook and line entanglement</td>
<td>2</td>
<td>Commercial hook and line fishery (bandit gear)</td>
<td>Low</td>
<td>High</td>
<td>4</td>
<td>See longline, observer information needed</td>
</tr>
<tr>
<td>Injury from hooking/hook and line entanglement</td>
<td>2</td>
<td>Recreational hook and line fishery</td>
<td>Medium</td>
<td>High</td>
<td>5</td>
<td>Education</td>
</tr>
<tr>
<td>Stress</td>
<td>Listing Factor</td>
<td>Threat</td>
<td>Severity</td>
<td>Restoration feasibility</td>
<td>Score</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>----------</td>
<td>-------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Direct Injury or Disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury or mortality from saw removal</td>
<td>2</td>
<td>All fisheries; curio demand; release technique</td>
<td>Low</td>
<td>Medium</td>
<td>3</td>
<td>Education (esp. safe release), enforcement, marketing prohibition, trade restrictions, CITES</td>
</tr>
<tr>
<td>Loss to the population by aquarium collecting</td>
<td>2</td>
<td>Aquarium collection</td>
<td>Low</td>
<td>High</td>
<td>4</td>
<td>Already banned; monitoring and enforcement</td>
</tr>
<tr>
<td>Injury during capture and handling during collection</td>
<td>2</td>
<td>Scientific monitoring and research</td>
<td>Low</td>
<td>Medium</td>
<td>3</td>
<td>Targeted research and monitoring covered by permitting; research providing data on safe handling, etc.; non-target research needs education</td>
</tr>
<tr>
<td>Disturbance of natural behavior</td>
<td>5</td>
<td>Divers, other marine activities</td>
<td>Low</td>
<td>Medium</td>
<td>3</td>
<td>Harassment – violation of “personal space,” needs education</td>
</tr>
<tr>
<td>Habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of juvenile habitat</td>
<td>1</td>
<td>Destruction of mangrove habitat</td>
<td>High</td>
<td>Medium</td>
<td>5</td>
<td>Increased risk of predation, reduced food supply, reduced survival</td>
</tr>
<tr>
<td>Loss of juvenile habitat</td>
<td>1</td>
<td>Dredge and fill</td>
<td>Medium</td>
<td>Medium</td>
<td>4</td>
<td>Juvenile preference for very shallow habitats</td>
</tr>
<tr>
<td>Alteration of freshwater flow</td>
<td>1</td>
<td>CERP, water management district policies</td>
<td>Medium</td>
<td>Medium</td>
<td>4</td>
<td>Juveniles prefer estuarine salinities, occur at river mouths, f/w use important issue in Florida</td>
</tr>
<tr>
<td>Loss of adult habitat</td>
<td>1</td>
<td>Loss of reefs, trawl modification of habitat</td>
<td>Low</td>
<td>Medium</td>
<td>3</td>
<td>Poorly understood and needs more research</td>
</tr>
<tr>
<td>Pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in reproductive output</td>
<td>1</td>
<td>Point source pollution</td>
<td>Unknown</td>
<td>Low</td>
<td>?</td>
<td>Evidence from other elasmobranches of endocrine disruption</td>
</tr>
</tbody>
</table>
Stress Listing

<table>
<thead>
<tr>
<th>Stress</th>
<th>Listing Factor</th>
<th>Threat</th>
<th>Severity</th>
<th>Restoration feasibility</th>
<th>Score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromised health</td>
<td>1</td>
<td>Warm water discharge from power stations</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
<td>Entrainment in warm water discharge areas that precludes natural movement patterns; indirect evidence based on effects from bull sharks; many records from power station discharges; low feasibility due to manatee regulations</td>
</tr>
<tr>
<td>Mortality in fish kill events</td>
<td>1</td>
<td>Point and Non-point source pollution</td>
<td>Low</td>
<td>Low</td>
<td>2</td>
<td>Algal blooms, decreased water clarity, red tides, fish kills, low oxygen</td>
</tr>
<tr>
<td>Injury from entanglement in marine debris</td>
<td>2</td>
<td>Marine debris; maritime traffic</td>
<td>Medium</td>
<td>Low</td>
<td>3</td>
<td>Discarded fishing gear (e.g. ghost gear, monofilament), trash (e.g. 6-pack holders, PVC pipe, bait box straps, coffee cans, plastic); low because already lots of education and low success</td>
</tr>
</tbody>
</table>

1. Present or threatened destruction, modification, or curtailment of habitat or range

The principal habitats for juvenile smalltooth sawfish in the southeast U.S. are the shallow coastal areas and estuaries, with some specimens moving upriver in freshwater (Bigelow and Schroeder 1953). The continued urbanization of the southeastern coastal states has resulted in substantial loss or modification of these coastal habitats. Activities such as agricultural and urban development, commercial activities, dredge and fill operations, boating, erosion, and diversions of freshwater run-off contribute to these losses [South Atlantic Fisheries Management Council, (SAFMC) 1998]. Loss and degradation of habitat have contributed to the decline of many marine species and are believed but not confirmed to have affected the distribution and abundance of smalltooth sawfish. Smalltooth sawfish remain in the U.S. today typically in protected or sparsely populated areas of the southern tip of Florida (see Distribution and Abundance section). The only known exception is a documented nursery area in the Caloosahatchee River in an area of waterfront residences and seawalls. Smalltooth sawfish may be especially vulnerable to coastal habitat degradation due to their affinity for shallow estuarine systems. Long-term commitments to habitat protection are necessary for the eventual recovery and conservation of the species.

The following subsections review the impacts of agricultural and urban development, commercial activities, dredge and fill operations, boating, erosion, and diversions of freshwater run-off on shallow coastal areas and habitats inhabited (or previously inhabited) by smalltooth sawfish.
Agriculture
Agricultural activities convert wetlands and shed nutrient, pesticide, and sediment-laden runoff. These in turn lead to excessive eutrophication, hypoxia, increased sedimentation and turbidity, stimulation of hazardous algal blooms, and delivery of chemical pollutants (SAFMC 1998). Freshwater wetlands associated with southeastern rivers have been extensively converted to agriculture or degraded by flood control and diversion projects in support of agriculture. Likewise, coastal wetlands have been converted to agricultural fields and degraded by flow alterations linked to agriculture. Agriculture is the single largest contributor of nutrients in southeastern watersheds (SAFMC 1998). Animal wastes and fertilizers are the largest sources of non-point source nutrient loading (USGS 1997). Agricultural non-point discharges are responsible for the introduction of a wide range of toxic chemicals into habitats important to smalltooth sawfish (Scott 1997). Even areas not immediately adjacent to agricultural areas can be affected by these activities. For example, all of Florida Bay has undergone biological, chemical, and physical change due to large scale agricultural practices and hydrologic modifications in the Everglades (Fourqurean and Roblee 1999).

Urban development
Urban development in the southeast coastal zone is more than four times the national average (Chambers 1992). Threats from development include loss of wetlands, point and non-point sources of toxins, eutrophication, and hydrologic modification. A major concern is the destruction of wetlands by filling for urban and suburban development (SAFMC 1998). In addition, seawalls and canals for waterfront homes have replaced marsh and mangrove intertidal shorelines and shallow estuarine waters. Of particular concern are sawfish habitats in places such as the Indian River Lagoon (Gilmore 1995), where the species was once abundant, but now appear to have been extirpated (Snelson and Williams 1981). Many of the wetland habitats in the Indian River Lagoon were impounded for mosquito control (Brockmeyer et al. 1997) and the effects of these alterations on the smalltooth sawfish populations there are unknown.

Commercial activities
Commercial development affects sawfish habitat in many ways. Loss of wetlands, non-point and point sources of pollution, and atmospheric deposition of industrial emissions are major impacts of commercial activities (SAFMC 1998). There is evidence from other elasmobranches that pollution disrupts endocrine systems and potentially leads to reproductive failure (Gelsleichter et al. in press). Sawfish may also alter seasonal migration patterns in response to warm water discharges from power stations (Simpfendorfer and Wiley 2005). The total amount of marine and estuarine fish habitat eliminated and degraded by commercial activities in the southeast is unknown but substantial (SAFMC 1998). In Florida, between 1943 and 1970, approximately 10,000 ha of this habitat were lost due to dredge fill and other activities related to accommodating the increasing human population. While loss of mangrove ecosystems throughout Florida is not overwhelming, losses at specific locations have been substantial (Odum et al 1982). Direct destruction of mangrove habitat is no longer allowed without a permit, but indirect damage to mangrove habitat from increased urbanization and the resulting overall habitat degradation still occurs. Given the documented losses that occurred during early developmental phases in Florida (1940-1970), it can only be assumed that, over the last 30 years, those losses have continued, and that the amount of available mangrove habitat is less than documented by these older studies. Between 1956 and 1978, about 875 square miles of marsh were lost along Louisiana's coast, mostly through subsidence, rising sea level, and oil and gas canals which cumulatively resulted in conversion of wetlands to open water. During those years, another 1,234 square miles of Louisiana coastal lands have been converted to agricultural, urban, or industrial uses (Boesch et al. 1994). The smalltooth sawfish's decline may be in part attributable to these habitat losses.
Channel dredging
Riverine, nearshore, and offshore areas are dredged for navigation, construction of infrastructure, and marine mining. The total environmental impact of dredging in the southeast is unknown, “but undoubtedly great” (SAFMC 1998). In an analysis of 18 major southeastern estuaries, (Orlando et al. 1994) recorded over 703 miles of navigation channels and 9,844 miles of shoreline modifications. Habitat effects of dredging include the loss of submerged habitats by disposal of excavated materials, turbidity and siltation effects, contaminant release, alteration of hydrodynamic regimes, and fragmentation of physical habitats (SAFMC 1998). Cumulatively, these effects have degraded habitat areas for smalltooth sawfish.

Boating activities
Several environmental impacts have been associated with boating activities. These include pollutants associated with boat use and maintenance; pollutants carried by stormwater runoff from marinas; boating support facilities; and physical alteration and destruction of estuarine and marine habitats by boat propellers and dredging for navigation. Boat registrations have increased dramatically in Florida, and new boat designs allow ever faster boats to use ever shallower waters.

Diversion of freshwater runoff
Modifications of natural freshwater flows into estuarine and marine waters through construction of canals and other controlled devices have changed temperature, salinity, and nutrient regimes; reduced both wetlands and submerged aquatic vegetation; and degraded vast areas of coastal habitat (Gilmore 1995; Reddering 1988; Whitfield and Bruton 1989). Profound impacts to hydrological regimes have been produced in South Florida through the construction of a 1,400 mile network of canals, levees, locks, and other water control structures which modulate freshwater flow from Lake Okeechobee, the Everglades, and other coastal areas (Serafy et al. 1997). The Comprehensive Everglades Restoration Project (CERP) is a major reconstruction project jointly led by the Army Corps of Engineers and the South Florida Water Management District, which has the potential to restore habitats and hydrological regimes in South Florida. Of particular concern is Biscayne Bay (Serafy et al. 1997), Florida Bay, the Ten Thousand Islands (Fourqurean and Robblee 1999), and Charlotte Harbor – areas most affected by discharge through the Everglades. Three of these four areas support the last remaining populations of smalltooth sawfish in U.S. waters (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005).

2. Over-utilization for commercial, recreational, scientific, or educational purposes
Commercial fisheries
Historically, smalltooth sawfish were often bycatch in various fishing gears, including otter trawl, trammel net, seine, and, to a lesser degree, hand line. Reports of smalltooth sawfish becoming entangled in fishing nets are common in early literature from areas where smalltooth sawfish were once common, but are now rare, if not extirpated. Henshall (1895) described smalltooth sawfish as being common along both coasts of Florida and noted that the smalltooth sawfish “does considerable damage to turtle nets and other set nets by becoming entangled in the meshes and is capable of inflicting severe wounds with its saw, if interfered with.” Henshall further reported that smalltooth sawfish were always killed by fishermen when captured because of this problem. Evermann and Bean (1898) noted that smalltooth sawfish were an abundant, permanent resident in the Indian River Lagoon on the east coast of Florida and also noted that they did considerable damage to fishing gear by becoming entangled in nets: “The larger smalltooth sawfish tore or cut the nets, while the smaller individuals became entangled and were difficult to remove.” Large catches of smalltooth sawfish occurred sporadically; one fisherman interviewed by Evermann and Bean reported taking an estimated 300 smalltooth sawfish in just one netting season on the IRL. Smalltooth sawfish are now believed to be extirpated from the IRL (Snelson and Williams, 1981; Schmid et al. 1988). Snelson and Williams (1981) attributed the loss of smalltooth sawfish in the IRL to heavy mortality associated with incidental captures by commercial fishermen. Baughman (1943)
discussed documented and reported accounts of smalltooth sawfish being taken in shrimp trawls along the Texas coast. Bigelow and Schroeder (1953), who described smalltooth sawfish as “plentiful in Florida waters,” noted they were of “considerable concern to fishermen as nuisances because of the damage they do to drift- and turtle-nets, to seines, and to shrimp trawls in which they often become entangled and because of the difficulty of disentangling them without being injured by their saws.”

Large-scale directed fisheries for smalltooth sawfish have not existed; however, sawfish bycatch has been documented in commercial landings in various regions, with the greatest amount of data available from Louisiana (this does not mean the greatest catches were made in Louisiana, just that this is where the best records were kept). The majority of the documented landings of smalltooth sawfish were from otter trawl fisheries (categorized as other, shrimp, or fish). There were also landings from trammel nets, beach haul seines, pelagic longlines, cast nets, trap float lines, and hand lines. Total Gulf of Mexico landings dropped continually from 1950 to 1978 from around 5 metric tons to less than 0.2 metric tons during this time period. NMFS does not have any records of landings since 1978. Simpfendorfer (2002) extracted a data set from “Fisheries Statistics of the United States,” taken from 1945-1978, of smalltooth sawfish landings in Louisiana by shrimp trawlers (See Figure 6). The data set contains both landings data and crude information on effort (number of vessels, vessel tonnage, number of gear units). Smalltooth sawfish landings in Louisiana reported over time declined from a high of 34,900 lbs in 1949 to less than 1,500 lbs in most years after 1967. The lack of landings since 1978 suggests that smalltooth sawfish have been commercially extinct in Louisiana waters for over 25 years. Anecdotal information collected by NMFS port agents indicates that smalltooth sawfish are now taken very rarely in the shrimp trawl fishery. The most recent records from Texas are from the 1980s. Smalltooth sawfish are still occasionally documented in shrimp trawls in Florida, with four reports in the 1990s.

Smalltooth sawfish are also taken in various federal shark fisheries. Two fisheries identified as incidentally capturing sawfish are the shark drift gillnet fishery and shark bottom longline fishery (NMFS Highly Migratory Species [HMS] Biological Opinion [BiOp] 2003). As previously mentioned, the long, toothed rostrum of the smalltooth sawfish causes this species to be particularly vulnerable to both gear types. The large mesh size used to catch sharks allows the saw to easily penetrate through nets, causing the animal to become entangled when it attempts to escape. The toothed saw makes it difficult to easily remove the fishing gear without causing mortal damage to the animal, or damaging gear. Entangled specimens frequently have to be cut free, causing extensive damage to nets and presenting a substantial hazard if brought on board. When captured on longlines, the gangion frequently becomes wrapped around the animal’s saw (G. Burgess, pers. comm.). This may be due to slashing during the fight, from spinning on the line, or any other action that brings the rostrum in contact with the line. Although all recently observed smalltooth sawfish caught in these fisheries were removed safely from the gear, information on the post-release effects (long- and short-term) of these interactions is unknown.

Recreational fisheries
Smalltooth sawfish have historically occurred as occasional bycatch in the hook-and-line recreational fishery (Caldwell 1990). Bigelow and Schroeder (1953) described sawfish as being “too sluggish to be held in any regard as game fish by anglers” and that “once hooked they swim so powerfully, though slowly and are so enduring, that the capture of a large one entails a long and often wearisome struggle.” Based on the observations of Caldwell (1990), however, Bigelow and Schroeder may have been too quick to disregard recreational fishing. In Texas, Caldwell (1990) stated that sport fishermen in the bays and surf prior to the 1960’s took many sawfish incidentally. A few were retained and displayed as trophy fish, but most were released. Caldwell noted that the saws of smalltooth sawfish were consistently removed prior to their live release and marks this as one of the reasons for their decline. Since completion of the status review, a substantial amount of data has been collected from recreational fisheries (Seitz and Poulakis 2002; Poulakis and Seitz 2004; Simpfendorfer and Wiley 2005). These data
indicate that smalltooth sawfish are still taken as bycatch, mostly by shark, red drum, snook, and tarpon fishers. There are no studies on post-release mortality, but mortality is probably low. Expanding and continuing education of anglers regarding the status of the smalltooth sawfish may help to minimize any negative effects of the recreational fishery on the sawfish population. Today, recreational catches of sawfish are rare and poorly documented for the most part, except within the ENP. Surveys in the ENP indicate that a sustaining population still exists there, with consistent annual catches by private recreational anglers and guide boats. Possession of smalltooth sawfish has been prohibited in Florida since April 1992. The records in the angler survey database indicate that only one sawfish was kept; this record was from 1990. There were 14 smalltooth sawfish recorded as kept in the guide survey database; one in 1991, one in 1992, and twelve in 1997.

Commercial trade
Information regarding the direct commercial utilization of smalltooth sawfish has been limited. Recently, McDavitt (2005) reviewed the information related to the commercial trade in sawfish, including the smalltooth sawfish. He identified two forms of trade – whole live sawfish for the aquarium trade and sawfish parts derived mostly from sawfish captured as bycatch in fisheries. Issues related to the aquarium trade are covered in the next section. The parts of sawfish that McDavitt (2005) identified in trade were:

- Fins. The fins of sawfish are used to produce shark fin soup. Sawfish fins are highly favored in Asian markets and are some of the most valuable shark fins. Demand for sawfish fins is therefore high and has led to some targeted fishing for sawfish (e.g., the largetooth sawfish in Lake Nicaragua was targeted during the 1970s mostly for its fins). There are no specific data on the trade in smalltooth sawfish fins from the U.S. DPS.

- Whole rostra (saws). Sawfish rostra are often traded as curios, ceremonial weapons, or for use in traditional medicines. Their trade as ceremonial weapons is focused in Asia; McDavitt (2005) reported that demand is currently outstripping supply, resulting in replica rostra becoming available. The prices of large rostra can reach several thousand dollars, given their current rarity. Some smalltooth rostra have been traded online in recent years, but most appear to be antiques captured many years previously. However, there has been some trade in recently caught sawfish rostra, mostly out of Australia. In January 2006, eBay responded to conservationists’ requests and agreed to officially ban the sale of smalltooth sawfish parts and products on their on-line auction site in accordance with eBay’s wildlife policies. Because of the similarity of appearance among sawfish species, this prohibition will require careful monitoring in order to be effective. The use of rostra in traditional medicine includes some use in China, Ethiopia, Mexico, and Brazil. There is no specific information on the trade of smalltooth sawfish rostra from the U.S. DPS.

- Rostral teeth. Rostral teeth are used and traded for use in cockfighting in Peru. The teeth are used as spurs that are strapped to the cock’s legs. The teeth are obtained from South American and Caribbean countries and are likely to include smalltooth sawfish teeth. Whether any were historically sourced from the U.S. DPS is unknown. McDavitt (2005) estimated that if all the teeth from a rostrum were utilized they would be valued from $2000 to $7000. It is unclear if the use of rostral teeth in cockfighting extends beyond Peru, and how much demand there is for these products.

- Meat. Sawfish are regularly used for their meat; however, most of the consumption is local and so they appear to be only occasionally traded beyond local markets. Sawfish meat has been
utilized historically in the U.S.; Romer (1936) reported that sawfish were the second most common elasmobranch species taken in the shark fishery in the Florida Keys during the 1930’s.

- **Organs.** Chinese traditional medicine also uses other sawfish parts, including liver, ova and gall bladder. Sawfish liver has also been used as a source of liver oil. The fishery in the Florida Keys described by Romer (1936) used livers as a source of vitamin A. The use of livers as a source of vitamin A stopped during the 1940’s when cheap synthetic forms became available. There are no data available on the trade in these parts for any species of sawfish.

- **Skin.** Sawfish skin has been used to produce leather, which, like shark leather, is considered of very high quality. The leather is used to make belts, boots, purses, and even to cover books. Although historically shark leather (including sawfish) was produced in the U.S., there is currently limited demand and little production. Tanneries in other countries, however, continue to produce shark leather, but the use of sawfish is unknown.

On the basis of these trade data, it appears that the commercial trade in smalltooth sawfish parts from the U.S. DPS is currently minimal due to their rarity. However, the demand for fins and saws provides a motivation to kill sawfish, a threat that will become increasingly significant as the population recovers.

Public display/aquarium trade
Sawfish have been exhibited in large public aquaria for over 50 years. Their large size, bizarre shape, and shark-like features have made them popular additions to shark aquaria exhibits worldwide. Currently, there are approximately 10 smalltooth sawfish in U.S. public aquaria, and all were originally captured in Florida. Since the ESA listing, NMFS has not granted any permits to take live smalltooth sawfish for public display. There has been some trade between institutions that house these sawfish, but no new specimens have been added. To meet the demand for sawfish for public display, U.S. aquaria have turned to suppliers in Australia who have supplied *Pristis microdon* and *P. zijsron*. At current prices these animals are worth $1,600 to $1,800 per foot.

Scientific research
Scientific study of smalltooth sawfish has been sparse and has yet to pose a significant threat to the U.S. DPS. Current scientific studies are limited to a small number of researchers who carry out non-lethal research in the wild. All research carried out on smalltooth sawfish requires a permit from NMFS due to the protections afforded under the ESA. Other permits are also required for research on smalltooth sawfish (e.g., state agencies for work in state waters and protected area management agencies). Requests for sawfish research permits are carefully reviewed, and the effects of the research on the population are considered before issuance.

3. **Disease or Predation**
The final listing rule for the species did not determine that disease or predation was a causal listing factor. Current data does not suggest that disease is a factor for the species but some limited information if available on predation. Acoustic monitoring, public encounter database data, and satellite archival tagging data indicate that small juveniles use red mangrove prop root habitat to avoid predators (see Habitat use section). Data is not available on predation of other size classes.

4. **Inadequacy of Existing Regulatory Mechanisms**
Numerous international, federal, state, and inter-jurisdictional laws, regulations and policies have the potential to affect the abundance and survival of smalltooth sawfish in U.S. waters. Whereas many state measures may lead to overall environmental enhancements indirectly aiding smalltooth sawfish recovery, only a few state prohibitions have been applied specifically for the protection of smalltooth sawfish.
National protections for smalltooth sawfish have been adopted in a few other countries, but the species remains completely unprotected in nations governing waters adjacent to the U.S. (such as Mexico, Cuba and the Bahamas). A summary of these fundamental laws, regulations, and policies is provided in Appendix C, followed by an assessment of their application to smalltooth sawfish and their potential to protect smalltooth sawfish from further decline.

5. Other Natural or Manmade Factors Affecting Its Continued Existence

The current and future abundance of the smalltooth sawfish is limited by its life history characteristics and small population size. Smalltooth sawfish have slow growth, late maturity, a long life span, and a small brood size. These characteristics, combined, result in a very low intrinsic rate of population increase and are associated with the life history strategy known as “k-selection.” K-selected animals are usually successful at maintaining relatively small, persistent population sizes in relatively constant environments. However, they are not able to sustain additional and new sources of mortality resulting from changes in their environment, such as overexploitation and habitat degradation (Musick 1999). Smalltooth sawfish have been subjected to both overexploitation and habitat degradation. The intrinsic rate of population growth can be a useful parameter to estimate the capacity of species to withstand exploitation. Animals with low intrinsic rates of increase are particularly vulnerable to excessive mortality and rapid stock collapse, after which recovery may take decades. For example, rapid stock collapses have been documented for many elasmobranches shown to have low intrinsic rates of increase, particularly larger species (Musick et al. 2000). Musick (1999) noted that intrinsic rates of increase less than 0.1 were low, and placed species at risk. Simpfendorfer (2000) used a demographic approach to estimate intrinsic rate of natural increase and population doubling time. Since there are very limited life history data for smalltooth sawfish, much of the data (e.g., reproductive periodicity, longevity, and age-at-maturity) were inferred from the more well-known largetooth sawfish. The results indicated that the intrinsic rate of population increase ranged from 0.08 - 0.13 yr -1, and population doubling times ranged from 5.4 yr to 8.5 yr. Simpfendorfer concluded, “recovery to levels where there is little risk of extinction will take at least several decades (pp. 1).” There are no data available on the size of the remaining populations, but all available evidence indicates that smalltooth sawfish survive today in small fragmented areas where the impact of humans, particularly from net fishing, has been less severe. Existence or development of separate subpopulations will increase the time that it takes for recovery since the demographic models used in the study above assume a single inter-breeding population. The recovery from very small population sizes may also impact conservation efforts due to the deleterious effects of inbreeding. It is likely that even if an effective conservation plan can be introduced in the near future, recovery to a level where the risk of extinction is low will take decades, while recovery to pre-European settlement levels would probably take several centuries.

H. Conservation Measures

Federal listing and protection for smalltooth sawfish under the ESA has bolstered previously promulgated protection for the species in Florida and Louisiana waters and has prompted protective state regulations in Alabama and Texas. The sawfish listing has also helped to stimulate research, monitoring and educational activities throughout the region and in other parts of the world. Further protective action, studies, and outreach efforts are, however, still urgently needed in federal and state waters to ensure recovery of the species.

1. Awareness initiatives

Smalltooth sawfish were classified as “Endangered” worldwide and “Critically Endangered” in the western Atlantic on the 2000 IUCN Red List of Threatened Animals (IUCN 2000); based on updated assessments, smalltooth and all the world’s sawfish species are being uplisted to “Critically Endangered” (Fowler pers. comm.). The main purpose of the IUCN Red List is to catalogue and raise awareness of species that are threatened with extinction. The U.S. population of smalltooth sawfish was also listed as
“endangered” (defined as being at “high risk of extinction in the near future”) as part of an American Fisheries Society (AFS) 2000 review of North American marine fish stocks (Musick et al. 2000).

Information regarding the status of smalltooth sawfish and what the public can do to help the species is available on websites of NMFS², MML³, The Ocean Conservancy⁴, and the FWC. Reliable sawfish information is also available at a website⁵ maintained by noted sawfish expert, Matthew McDavitt. The SSRT also maintains a webpage⁶. These organizations and individuals also educate the public about sawfish status and conservation through regular presentations at various meetings and events.

2. Research and monitoring efforts
Research on smalltooth sawfish is contributing significantly to the development of conservation measures, with the increased knowledge being used to formulate management actions. Research efforts conducted under ESA section 10 permits are focused within a small group of agencies and organizations, including the NMFS, ENP, MML, FWRI, and the Rookery Bay National Estuarine Research Reserve. Brief summaries of each organization’s research and monitoring efforts are provided.

National Marine Fisheries Service
NMFS’ predecessor agencies, the U.S. Fish Commission and the Bureau of Commercial Fisheries, began collecting fisheries landings data in 1880. Landings data were collected during surveys of a limited number of states and years between 1880 and 1951. Comprehensive surveys of all coastal states have been conducted since 1951. Years, areas, and completeness of landings surveys prior to 1977 are listed in the publication, “Fisheries Statistics of the U.S., 1977.” Subsequent publications have been annual. Recreational saltwater angling data have been collected through the Marine Recreational Fishery Statistics Survey (MRFSS) since 1979. The MRFSS is designed to provide regional and state-wide estimates of recreational catch for the entire spectrum of marine fish species in the Atlantic Ocean and Gulf of Mexico (from Maine to Louisiana; Texas is excluded). A query of MRFSS data from 1981 through August of 2000 for smalltooth sawfish records found only one sawfish.

Everglades National Park
The objectives of fisheries monitoring in ENP are to provide catch and effort data including catch/harvest rates (CPUE/HPUE), relative abundance, annual estimated total harvest and catch, age structure, total catch and harvest, and boating and fishing activity. Recreational fishers are interviewed at boat launch sites (Flamingo and Chokoloskee/Everglades City; Schmidt et al., 2000) upon completion of their trip. Data recorded includes area fished, fish kept and released, effort (in angler-hours), species preference, angler residence, and fish lengths. Professional guides are required to obtain an annual permit from the park and report their monthly catch and effort on a per trip basis via logbooks supplied with the permit. Prior to 1980 reporting was voluntary.

Mote Marine Laboratory
MML’s Center for Shark Research has an active research program on smalltooth sawfish. This research commenced in 1999 and is ongoing. The MML research team conducts a range of research activities that include longline surveys, tagging, acoustic tracking and monitoring, satellite telemetry, population

³ http://www.mote.org/
⁴ http://www.oceanconservancy.org/site/PageServer?pagename=fw_sawfish
⁵ http://hometown.aol.com/nokogiri/
⁶ http://www.flmnh.ufl.edu/fish/sharks/sawfish/srt/srt.htm
modeling, genetics (in collaboration with Florida State University), and the collection of public encounter data. The research activities are used to study habitat use, movement and migration patterns, abundance, distribution, population structure, life history parameters, effects of hurricanes, population dynamics, and more. MML’s research is focused in Florida from Sarasota to the Keys. The results of this work have produced scientific publications, technical reports, and databases that have been used in the compilation of this recovery plan.

Florida Fish and Wildlife Conservation Commission

The FWC’s FWRI (formerly Florida Marine Research Institute) and its associated predecessor agencies (Department of Natural Resources, Department of Environmental Protection) are responsible for collecting a wide variety of estuarine and marine fisheries data for the State of Florida (e.g., stock assessments, life history, fisheries-dependent monitoring, fisheries-independent monitoring). Headquartered in St. Petersburg, the FWRI has seven field laboratories located in East Point, Cedar Key, Port Charlotte, Marathon, Tequesta, Melbourne, and Jacksonville that conduct estuarine and marine research and monitoring activities in their regions. The fisheries sampling that occurs statewide by the State of Florida has the potential to provide a significant amount of data on smalltooth sawfish, especially as recovery of the species progresses and sawfish move beyond their current south Florida range.

The FWC’s Fisheries-Independent Monitoring (FIM) Program was initiated in 1989 and is an ongoing, long-term sampling program that monitors the relative abundance of fishery resources in Florida’s major estuarine, coastal, and reef systems. FIM scientists at the FWC’s Charlotte Harbor Field Laboratory in Port Charlotte are currently focusing on smalltooth sawfish in the Charlotte Harbor estuarine system, especially the Caloosahatchee River. Funding provided through NMFS’ ESA section 6 program has allowed the FIM program to expand its sampling in Charlotte Harbor. Increased sampling with a variety of gear and techniques will increase the likelihood of encountering sawfish in Charlotte Harbor and provide important data such as valid estimates of relative abundance, length frequencies, juvenile recruitment, sex ratios, habitat preferences, and spatial and temporal distributions. Randomly selected sites will ensure broad coverage of the estuary and a directed sampling effort will target ‘hot spots’ or areas of high sawfish abundance or recent capture. The goal of the directed sampling is to collect a broad range of ecological and life history data using techniques that include acoustic tracking and monitoring. During the first year, 23 smalltooth sawfish were captured, tagged, and released during NMFS-funded studies.

The FWC’s Fisheries-Dependent Monitoring Program, in cooperation with NMFS, collects and compiles data on recreational landings, commercial landings, and processed fishery products in Florida. The recreational landings are collected as part of the MRFSS program and the FWRI is in the process of expanding the questionnaire to include information on sawfish.

Rookery Bay National Estuarine Research Reserve

Within the Rookery Bay National Estuarine Research Reserve, three bays comprise the majority of the upper Ten Thousand Islands estuary and from north to south are named Pumpkin Bay, Faka Union Bay, and Fakahatchee Bay. A very large restoration project established in July 1998, a fisheries independent monitoring program was established to document baseline distributions and abundances of fishes and certain commercially and recreationally important invertebrates (blue crab, stone crab and pink shrimp) prior to the restoration (Shirley et al. 2005). Random trawl sets are conducted in each bay (Rookery Bay added in January 2000) on a monthly basis. A separate monthly survey of the apex predators in this area began in May 2000 to determine the effect of a hydrologic restoration on the relative abundance and movements of sharks in the Ten Thousand Islands. Monthly and longline sets are used to capture sharks utilizing the back bays of the Ten Thousand Islands as nursery grounds due to shallow depths and high productivity. Smalltooth sawfish are occasionally caught as bycatch and are tagged in collaboration with
scientists from MML. In addition to fisheries and shark monitoring, water quality measurements (salinity, temperature, dissolved oxygen, pH, and turbidity) are monitored continuously (every 30 minutes) in each bay system.
Figure 8a: Marine Protected Areas in South East Florida. Sawfish encounter data from the Mote Marine Laboratory Sawfish Encounter Database.
Figure 8b: Marine Protected Areas in the Florida Keys. Sawfish encounter data from the Mote Marine Laboratory Sawfish Encounter Database.
Figure 8c: Marine Protected Areas in South West Florida. Sawfish encounter data from the Mote Marine Laboratory Sawfish Encounter Database.
II. RECOVERY STRATEGY
The goal of this recovery plan is to rebuild and assure the long-term viability of the U.S. DPS of smalltooth sawfish in the wild, allowing initially for its reclassification to “threatened” status, and ultimately for its removal from the federal list of endangered and threatened species.

In developing a strategy to recover the U.S. DPS of smalltooth sawfish, the SSRT faced two threshold challenges:

1. There was only a small amount of information available on smalltooth sawfish both within U.S. waters and worldwide. This lack of information limited the understanding of the relative importance of different threats to the population, identifying the most effective conservation measures, and predicting how the population would respond to these conservation measures. Research underway at the time of writing was used to help draft the recovery plan and will further inform recovery efforts in the future.

2. The smalltooth sawfish is the first fully marine fish species in U.S. waters and the first elasmobranch listed under the ESA. Thus there is limited relevant recovery planning experience from which to draw.

In the face of these challenges, the recovery plan was developed based on the best available science, the collective expertise of SSRT members, and collaborative deliberation. Given the limitations, it was recognized and recommended that future research should be used to refine and amend the recovery plan.

In developing the recovery plan, the SSRT considered the status of the sawfish relative to the ESA’s definition of endangered or threatened species, the causal listing factors, identified threats, and the ultimate goal of delisting to develop the three main objectives of the plan. Recovery of smalltooth sawfish would be achieved by accomplishing the three main objectives of the plan. The first objective is to minimize human interactions, and injury and mortality associated with human interactions. This objective was developed to ensure that as the species population increases and recovers its status does not reverse or decline. Thus, this objective addresses listing factor 2. The second objective protects and/or restores smalltooth sawfish habitats and primarily addresses factor 1, though it also addresses factors 2 and 3. The third objective is to ensure the smalltooth sawfish abundance increases substantially and reoccupies areas from which they had previously been extirpated. This objective should ensure that the population is increasing and its distribution is such that it would no longer meet the definition of either an endangered or threatened species, and delisting can occur. This objective also addresses listing factor 2. All objectives have components that address listing factor 4, inadequacy of regulatory mechanisms.

The primary threats to the species posed by commercial and recreational fishing must be minimized. Whereas sawfish have rarely been targeted, their toothed rostra make them highly susceptible to capture in most forms of fishing gear. Historically, captured sawfish were killed, either for their parts, safety concerns, or because they damage fishing gear. Addressing this key threat will involve both preventing the capture of sawfish in fisheries and minimizing harm to sawfish that are caught. Second, habitats, especially those that have been demonstrated to be important for juveniles, must be protected and if necessary restored. Protected, suitable habitats throughout the target range will be necessary to support the recovering population. Without sufficient habitat, the population is unlikely to increase to a level associated with low extinction risk and delisting. Third, substantial population increases and reoccupancy of areas where they have been extirpated must occur to ensure the populations viability and to protect it against stochastic events. The three main objectives must be met to ensure the recovery of the population.
The Recovery Program (Section IV of this plan) describes the specific actions needed to accomplish the three main objectives of the plan.

The SSRT also recognized that the species can recover to the point at which it does not need protection under the ESA even if the population is not restored throughout its entire historic range (New York to Texas). This assumes the successful implementation of the plan and the reduction of threats identified at the time of listing. The SSRT considered that recovery of the population would include the areas throughout the core of its historic range and some additional areas outside of the core would ensure that the risk of extinction would be eliminated. The core of the historic range was defined as the waters off Florida. Recovery criteria and actions were focused within this area, but were not restricted to it. It was also noted that recovery efforts within this core range may need to be focused in specific areas. For example, historic data indicates that smalltooth sawfish very commonly used the IRL system on the east coast of Florida, but current data indicate that they are rarely observed in this area. Other areas, such as the ENP, where habitat protections and fishing regulations currently provide a refuge for sawfish, may require fewer conservation measures.

Stochastic natural disasters (such as red tides and hurricanes) that regularly occur throughout much of the range of the species can also pose a threat to sawfish recovery and were therefore considered. Nursery areas used and available to smalltooth sawfish should not be concentrated in a single, limited geographic region (e.g., the Everglades coast) as these types of events could heavily affect these areas. Fourteen recovery regions (Figure 9) were designated throughout the historic range to ensure that conservation efforts would be geographically dispersed and thereby protect against serious population damage from stochastic events. The recovery regions took into account biogeographic boundaries and information about the historic and current distribution of smalltooth sawfish.

The historic range of the U.S. DPS has been divided into 14 recovery regions. Even when sawfish were plentiful throughout the U.S. South Atlantic and Gulf of Mexico, the core of abundance and the most important juvenile habitat were located along both coasts of peninsular Florida. Therefore, Florida contains eight of the 14 recovery regions, along both the Gulf and Atlantic coasts.
The SSRT concluded that many of the threats to the smalltooth sawfish population could be reduced substantially through education. Such a strategy will rely on an improved conservation ethos within the recreational fishing community and enhanced interest from the public. Training fishermen on the safe handling and release of these large and often dangerous animals and educating them that the population is endangered should improve the survival of smalltooth sawfish and aid recovery. Broader educational activities will also raise public awareness for this species and its plight and in turn foster greater community support for conservation of sawfish and their habitats.

Finally, a recovery assessment was designed to be as quantitative as possible, taking into account the challenges outlined above. Thus, conflicting conclusions and judgment calls will be minimized, progress will be measurable, and the success or failure of recovery efforts can be clearly determined. It was recognized, however, that these criteria may need to be modified if and when better information becomes available.

A. Key Facts and Assumptions
This recovery plan for the U.S. DPS of smalltooth sawfish is based on several key facts and assumptions that are summarized here and detailed elsewhere in this plan.

1. Range Contraction - Smalltooth sawfish in the U.S. used to be common from Texas to the Carolinas and ranged occasionally as far north as New York. The range has contracted by approximately 90% and is now restricted primarily to peninsular Florida. Smalltooth sawfish can only be found with any regularity off the extreme southern portion of the state of Florida.
2. **Population Decline** - Available data indicate that smalltooth sawfish have declined dramatically in U.S. waters over the last century. In Louisiana, the one state which regularly collected fishery data for sawfish, catches declined by more than 99% from 1950s to the 1970s. There have been no verified catches in Louisiana since 1978.

3. **Threats from Fisheries** - There has never been a substantial directed fishery for smalltooth sawfish. However, smalltooth sawfish are caught as bycatch in various commercial fishing gears, including gillnet, otter trawl, trammel net, seine, and, to a lesser degree, longline. Historically, sawfish caught in nets or trawls frequently had to be cut free, causing extensive damage to nets, and presenting a substantial hazard if brought on board. For these reasons, most smalltooth sawfish caught by fishermen were either killed outright or released only after often lethal removal of their saws.

Smalltooth sawfish are also taken as bycatch in recreational and commercial hook-and-line fisheries. Historically, most of these fish were released alive, but often after lethal removal of the saws, presumably for personal use as trophies or sale as curios. Although there is a market for smalltooth sawfish saws, the species is not directly targeted in the U.S., and any captures appear to be incidental.

4. **Habitat Loss** - Juvenile smalltooth sawfish in their current range are found mainly inshore and in or adjacent to shallow mangrove habitats. The loss of mangrove habitats is likely a significant contributing factor for the decline of the species.

5. **Biological Considerations** - The life history characteristics of sawfish have clearly contributed to population depletion and are certain to hamper recovery. Sawfish are “k-selected” species. That is, they grow slowly, mature late, bear few young, and live long lives. These characteristics make sawfish populations extremely vulnerable to threats, particularly overfishing, and slow to recover once depleted. Even if all threats were removed, it will take decades for the population to significantly increase.

Paradoxically, the species’ menacing saw and potentially massive size contribute to its vulnerability. Its saw is easily entangled in many types of fishing gear, and it is a large enough animal to tear through nets and injure fishermen. These factors have led many fishermen over the years to remove the saw from incidentally captured sawfish, or to kill them outright. On the other hand, sawfish are relatively robust animals that can usually survive capture as long as they are kept in the water and handled with care.

B. Main Objectives

As summarized above, there are three main objectives of this recovery plan:

1. **To minimize human interactions, and injury and mortality associated with human interactions** – A first step toward this objective is the development and dissemination of safe handling and release guidelines for recreational and commercial fishermen. Given that smalltooth sawfish are hardy animals and are thought to be tolerant of being caught in most fishing gear, safe handling and release according to these guidelines will substantially mitigate the effects of incidental catch. Subsequent steps may involve establishing time/area restrictions to protect particularly vulnerable or important habitats and/or to reduce impacts from fishing gears for which safe handling and release guidelines are not practical or effective.

2. **To protect and/or restore smalltooth sawfish habitats** – Available data indicate that mangrove habitat is extremely important for juvenile sawfish. Substantial amounts of mangrove forests have been destroyed due to urbanization and other anthropogenic causes. To recover sawfish, there can be no further loss of existing mangrove habitats, and some previously degraded or destroyed mangrove
stands will need to be restored. More information is required to better understand habitat requirements of adult sawfish. It is essential that key habitats for juveniles and adults are widely distributed and sufficiently abundant to provide a buffer against stochastic events that may destroy or disrupt them (e.g., hurricanes).

3. **Ensure the smalltooth sawfish abundance increases substantially and reoccupies areas from which they had been previously extirpated** – The contraction in range of the species was an important reason for listing this species. Therefore, a substantial increase in sawfish range is required before downlisting or delisting can be considered. At the same time, under the ESA and this plan, it is not necessary to reestablish the species to all areas that it once occupied before reclassification of the species. To downlist and delist the species, sawfish must be present in numbers sufficient throughout the core of its historic range, defined as the waters off Florida and also in some additional areas outside of the core. In addition, smalltooth sawfish must be present not only throughout the core of their historic U.S. range, but must also occur in numbers sufficient to eliminate the risk of extinction in the immediate or foreseeable future. Population viability analysis may guide the development of threshold and target sizes.

There remains a significant lack of information on smalltooth sawfish, which will hamper the implementation of this recovery plan. Continued efforts to gather data on the life history, movement patterns (especially of the adults), habitat use, and population dynamics are essential. In addition to continued research, the initial efforts in recovery will involve stabilizing the population by removing threats (e.g., sources of mortality due to fishing). With the population stabilized the focus of recovery efforts will shift towards rebuilding the population (in both numbers and geographic range) by continued threat reduction, but also by improving the amount of habitat available to smalltooth sawfish.

During the discussion of recovery options for smalltooth sawfish, the SSRT considered active restoration (i.e., restocking). However, after much discussion the group considered this to be of limited usefulness for the recovery efforts for several reasons:

- Practical difficulties for a captive breeding program would likely be prohibited due to the slow growth, late maturity, and large size of this species.
- Smalltooth sawfish show some level of site fidelity when young, but in general are mobile and can move over relatively large distances. Thus sawfish restocked in one area are not likely to stay within that area for long periods.
- The lack of information on the current or historic stock structure of the species, and on what impact restocking may have on the genetic structure of the population creates significant conservation concerns.
III. RECOVERY GOAL, OBJECTIVES, AND CRITERIA

A. Goal

The goal of the recovery plan is to rebuild and assure the long-term viability of the U.S. DPS of smalltooth sawfish in the wild, allowing initially for reclassification from endangered to threatened status (downlisting) and ultimately recovery and subsequent removal from the List of Endangered and Threatened Wildlife (delisting). Achievement of recovery as defined here does not require the return of a species to all of its historic range. Recovery of smalltooth sawfish throughout the core of its historic range (defined as the waters off the coast of Florida) plus the presence and protection of sawfish outside of its core historic range will ensure that the species is not in danger of extinction and may be delisted.

B. Objectives

Three broad objectives for recovery were identified – 1) minimize human interactions, and injury and mortality associated with human interactions; 2) protect and/or restore the smalltooth sawfish habitats; 3) and ensure smalltooth sawfish abundance increases substantially and that they reoccupy areas from which they had been previously extirpated (see Recovery Strategy). Within each of these objectives the SSRT identified a number of specific sub-objectives and recovery criteria (both downlisting and delisting). The sub-objectives are presented below. In each section that follows, the sub-objectives are first identified and described, and then the recovery criteria for the objective are presented. Recovery criteria are objective, measurable standards for determining that recovery objectives have been met, and downlisting or delisting the species is appropriate. The criteria listed below address all causal listing factors identified at the time of listing and current threats that must be addressed to ensure the delisting of the species. The numbers in brackets indicates the ESA listing factor that is addressed by the specific downlisting or delisting criteria. The recovery criteria listed under Objective 3 are not associated directly with a specific causal listing factor but address the status of the species and indirectly address causal listing factors 1 and 2. This objective ultimately addresses abundance which is vital to delisting.

1. Minimize Human Interactions, and Injury and Mortality Associated with Human Interactions

Sub-Objectives

a. Minimize human interactions and resulting injury and mortality of smalltooth sawfish through public education and outreach targeted at groups that are most likely to interact with sawfish (e.g., fishers, divers, boaters).

Public education will be a critical factor in reducing the threat to smalltooth sawfish posed by people’s lack of awareness of regulations and the species’ conservation needs. Education efforts should be spread broadly across the spectrum of public groups, but should be focused on those sectors most likely to encounter sawfish, such as fishermen, divers, boaters, ecotourism operators, marine construction workers, and researchers.

b. Develop and seek adoption of guidelines for safe handling and release of smalltooth sawfish to reduce injury and mortality associated with fishing.

Smalltooth sawfish can be released alive and in good health if they are carefully handled and released from capture. Safe handling and release guidelines need to be in place throughout the historic range of the smalltooth sawfish because adults are mobile and therefore are likely to venture into all recovery regions, even those closest to the edges of their range. To ensure the
adoption of these guidelines, the states (especially Florida) should be strongly encouraged to apply for Section 10 (a) (1)(B) permits (i.e., habitat conservation plans).

c. Minimize injury and mortality in all commercial and recreational fisheries.

Federal and state fishery agencies must take steps to minimize incidental mortality of smalltooth sawfish and ensure that the cumulative take across all commercial and recreational fishing gear does not threaten the long term viability of the species. Mortality should be considered across all fisheries combined as calculating it individually would result in the negative impacts being underestimated.

d. Reduce, eliminate or prevent the threat from trade in sawfish or sawfish parts.

Trade in sawfish may drive take of smalltooth sawfish from the U.S. DPS. Trade criteria are not limited to the regulation of smalltooth sawfish as other sawfish species can look very similar and may need to be included to protect smalltooth sawfish. Until delisting, the capture of smalltooth sawfish for aquaria would be covered by permitting under ESA.

e. Reduce or prevent injury and mortality from research activities.

Scientific research (both directed and indirect) may result in mortality of smalltooth sawfish. Whereas it is unlikely that research activities alone will cause population declines, research must be considered in combination with other sources of mortality. The requirement for permitting smalltooth sawfish research under the ESA should assist in achieving this objective. In addition, the recommended development and distribution of standardized research protocols, designed to minimize sawfish harm, will also address this need.

f. Establish post-delisting monitoring and protection measures.

Smalltooth sawfish was listed as endangered in part due to the inadequacy of existing regulatory mechanisms. Currently, the ESA provides protection to the species from many threats. State and Federal agencies may need to implement and/or maintain regulations to protect sawfish to ensure continued population viability once the species is delisted and the protections afforded by the ESA are removed. Some level of sawfish take may be allowed after delisting, as long as the effects on the population are clearly demonstrated; such operations must also be permitted and regularly assessed. State regulations, in addition to Federal measures, may be needed given that much of the population will occur in state waters. State measures need to be at least as stringent as federal regulations.

Downlisting criteria

i. Effective ongoing programs are in place to educate the public about population status and the prohibitions against capturing, harming, or harassing smalltooth sawfish are in place [2].

ii. Safe handling and release guidelines have been developed, adopted, distributed, and are being effectively implemented in all state and Federal fisheries (commercial and recreational) that may interact with smalltooth sawfish within all recovery regions (See Figure 9) [2/4].

iii. State and/or Federal fishing regulations specific to smalltooth sawfish are in place to ensure that injury and mortality from commercial and recreational fishing is maintained below or at levels
that ensure the population increases at the rate, or stabilizes at the levels, described in the criteria identified in Objective 3 [2/4].

Delisting criteria

i. All downlisting criteria continue to be met [1, 2, and 4].

ii. State and/or Federal measures (not including those provided under the ESA) are in place to prohibit harm or possession of smalltooth sawfish unless resulting impacts are appropriately assessed, authorized, and minimized [2/4].

iii. State and/or Federal measures (not including those provided under the ESA) are in place to maintain the population and habitat at levels at or above those required for delisting [2/4].

2. **Protect and/or restore smalltooth sawfish habitats**

Sub-Objectives

a. Assess nursery habitats to determine that they are of sufficient size and quality to provide sufficient food, shelter, and other essential requirements of juvenile sawfish such that the population may increase, consistent with Objective 3.

Recovery of the smalltooth sawfish depends on the availability and quality of nursery habitats, much of which have been lost or significantly degraded throughout the species’ historic range. Habitat protection and restoration criteria associated with this objective are designed to match the recovery regions used to assess the status of juvenile sawfish in the demographic objectives and are therefore focused primarily on Florida.

Much historic juvenile sawfish habitat in southwest Florida (covering three recovery regions) remains high quality. Given habitat loss elsewhere, it is essential that the remaining high-quality nursery habitats in these recovery regions be strongly protected and maintained at near existing levels to allow for the species’ recovery. Other habitats, while important, do not need to be completely restored under this recovery plan. To address these regional differences in habitat requirements, this plan takes a tiered approach to habitat-based criteria: 1) retain and protect a core of “high-quality” habitat in three recovery regions in southwest Florida; and 2) protect and/or restore habitats in three (downlisting) or six (delisting) other recovery regions to at least a level of “moderate-quality.”

For the three recovery regions with remaining high-quality habitats, juvenile habitat (i.e., mangroves) must be maintained over the long term at or above 95% of existing acreage. For recovery regions with moderate-quality habitats, juvenile habitat must be maintained and/or restored at or above 25% of the levels identified in 1940. Mangrove mapping data from the 1940’s appears to be the earliest and most reliable data, therefore it will be used as the baseline. These levels were selected based on the best professional judgment of the SSRT, given the goals of this plan and an understanding of sawfish habitat needs. This tiered approach reflects the fact that reversing the majority of the substantial modification to Florida’s coastal environments is likely not feasible. However, if habitats in southwest Florida remain very high quality, the initial assumption is that 25% of historic habitat in these other regions should be sufficient to allow recovery of the DPS, which may be revised based on research results and population growth.
There were no specific data available to determine historic levels of juvenile habitat. Research will be required to determine historic levels of shoreline habitats, and the level of habitat protection and/or restoration required to meet the recovery criteria.

b. In nursery habitats, minimize or eliminate disruption of natural/historic freshwater flow regimes (including timing, distribution, quality, and quantity) and maintain or restore water quality to ensure the long-term viability of smalltooth sawfish.

Changes to freshwater flows throughout the historic range of smalltooth sawfish, and in peninsular Florida in particular, may have affected how juvenile sawfish use nursery habitats (or even if they can). Little scientific research is available on the salinity preferences and tolerances of this species. This information needs to be collected and used to set appropriate freshwater flow regimes.

c. Protect the habitats (particularly mating and pupping areas) of adult smalltooth sawfish.

Habitats that are important to adult smalltooth sawfish and/or those areas in which sawfish may be particularly vulnerable to over-exploitation (such as aggregation sites) need to be identified and protected. Information is currently inadequate to identify these sites. However, ongoing and future research should provide this information and thereby guide an adult sawfish habitat conservation strategy. Sawfish are more susceptible to capture and negative impacts caused by habitat disturbance (e.g., habitat destruction, pollution) in areas where they aggregate. Therefore, these areas need to be protected.

Downlisting criteria

i. At least 95% of mangrove shoreline habitat at the time of listing is maintained and effectively protected in recovery regions G, H and I (See figure 9 for map of Recovery Regions) [1/4].

ii. Sufficient mangrove shoreline habitat is available and accessible to support viable subpopulations of juvenile smalltooth sawfish in recovery regions J and K. This level should be a minimum of 25% of the area of mangrove shoreline that existed in 1940, in each of the above recovery regions [1/3].

iii. Sufficient nursery habitat is available and accessible to support a viable subpopulation of juvenile smalltooth sawfish in one additional recovery region (apart from G, H, I, J and K, covered in the first two downlisting criteria). This level should be a minimum of 25% of the area of shoreline habitats that existed in 1940, in this additional recovery region [1/3].

iv. Freshwater flow regimes (including timing, distribution, quality, and quantity) into nursery habitats in recovery regions G, H, I, J, K and the one additional region used to meet the three previous criteria are appropriate to ensure natural behavior (e.g., feeding, resting, and predator avoidance) by maintaining salinities within preferred physiological limits of juvenile smalltooth sawfish [1].

v. Habitat areas of adult smalltooth sawfish abundance, including those used for aggregation, mating and pupping are identified, mapped, and effectively protected as appropriate. [1/4].
Delisting criteria

i. All habitat-based downlisting criteria continue to be met [1/3].

ii. Sufficient nursery habitat is available and accessible to support a viable subpopulation of juvenile smalltooth sawfish in three recovery regions in addition to those required for downlisting (G – K, plus four others). This level should be a minimum of 25% of the area of shoreline habitats that existed in 1940, in each of the above recovery regions [1/3].

iii. Freshwater flow regimes (including timing, distribution, quality and quantity) into recovery regions G, H, I, J, K and the four additional used to meet the previous delisting criteria appropriate to ensure natural behavior (e.g. feeding, breeding and pupping) by maintaining salinities within preferred physiological limits of juvenile smalltooth sawfish [1].

3. Ensure smalltooth sawfish abundance increases substantially and reoccupies areas from which they had previously been extirpated.

Sub-Objectives

a. Sufficient numbers of juvenile smalltooth sawfish inhabit several nursery areas across a diverse geographic area to ensure survivorship and growth and to protect against the negative effects of stochastic events within parts of their range.

Productive sawfish nursery populations need to be protected in several recovery regions so that these important juvenile populations are distributed across a diverse geographic area throughout the core of the species’ historic range. This approach minimizes the risk of stochastic disasters (e.g., hurricanes, fish kills) by ensuring that some nursery populations are available even if one or two are not available or productive for some time after a hurricane or other disturbance. It is not required under this recovery plan that all historic nursery areas be repopulated, but rather that they are sufficiently represented and dispersed to ensure juvenile sawfish survival and population growth.

Each recovery region counted toward downlisting and delisting criteria (6 and 9 recovery regions, respectively) must support sufficiently large numbers of juvenile sawfish such that the species is viable in the long-term and can maintain genetic diversity. To meet this goal, each of these recovery regions should support annual juvenile population growth of at least 5% -- approximately half of the intrinsic rate of natural increase calculated by Simpfendorfer (2000). In addition, the growth rate should be maintained at this level, on average, for one generation time (27 years).

As juvenile sawfish in each nursery area approach the habitat’s carrying capacity, population growth rates are expected to taper off. To account for this situation, the downlisting and delisting criteria can also be met if surveys indicate the nursery area is at 80% carrying capacity, even if average population growth rate is below 5%. This level was selected based on the best professional judgment of the scientists on the SSRT as the minimum that would ensure a high probability of juvenile survival in each recovery region. To meet the delisting criteria, the

7 The amount and quality of habitat strongly affects the carrying capacity of an area. Because juvenile recovery criteria are based on carrying capacity, it is the habitat-based criteria associated with habitat quality objectives that will largely determine the eventual numbers of juvenile sawfish in each Recovery Region.
population must be maintained at 80% or more of carrying capacity for 14 years -- approximately one half of a generation.

b. Adult smalltooth sawfish (males > 270 cm and females > 360 cm) are distributed throughout the core of the species’ historic range, including along both the Gulf of Mexico and Atlantic coasts of Florida. Numbers of adult smalltooth sawfish in both the Atlantic Ocean and Gulf of Mexico are sufficiently large that there is no significant risk of extirpation (i.e., local extinction) on either coast.

Sufficient numbers of adult smalltooth sawfish must be present throughout the core of the species’ historic range to ensure the DPS will not be in danger of extinction. Criteria associated with this objective were developed through a different approach than the criteria used for juvenile sawfish. The level of increase is different than that used to evaluate the abundance of juveniles due to the greater degree of movements observed in adult sawfish versus the use of individual recovery regions by juveniles.

There is little information specific to adult smalltooth sawfish from which to develop delisting or downlisting criteria for this objective. In the absence of species-specific information, criteria were developed for this objective by adapting the approach described by the American Fisheries Society’s (AFS) criteria for assessing risk of extinction for marine fish (Musick et al. 2000) based on life history characteristics. For “low productivity” species, such as smalltooth sawfish, the AFS criteria suggest that a population decline to 15% of virgin numbers is consistent with a species vulnerable to extinction.

Simpfendorfer suggested that the U.S. DPS of smalltooth sawfish may have declined by as much as 99% (Pers. comm. June 2006). Therefore, a 15-fold increase in adult smalltooth sawfish off both the east and west coasts of Florida would result in an adult population that is approximately 15% of its virgin numbers in these regions, and would be a population that could be safely downlisted (assuming the threats and habitat downlisting criteria are also met). Given the uncertainty associated with the species population estimate, and taking a precautionary approach, the adult population must increase by 20-fold, for delisting. For both downlisting and delisting criteria to be met, these adult population numbers must be maintained for 14 years (approximately one half a generation time).

There is currently no baseline level for absolute or relative abundance of adults at the time of listing. It is anticipated that the baseline level will be determined through the use of surveys within five years. Data currently available from the ENP have shown that current population levels have likely been stable over the recent past, and that sawfish population growth is expected to be low under even ideal conditions. Therefore, abundance at the time of listing can be reasonably estimated by post-listing surveys if they are conducted in the near future.

c. Historic occurrence and/or seasonal migration of adult smalltooth sawfish are reestablished or maintained both along the Florida peninsula into the South-Atlantic Bight, and west of Florida into the northern and/or western Gulf of Mexico.

Most sawfish recovery efforts and recovery criteria in this recovery plan focus on the waters off of Florida. However, the species historically occurred commonly from Texas to North Carolina. While it is not necessary under this recovery plan to restore the DPS throughout its historic range, it is necessary that sawfish are at least present and protected in areas outside of Florida before downlisting or delisting can occur. Such presence outside of Florida would indicate that the DPS...
is adequately protected, and/or is undertaking seasonal migrations outside of Florida waters that were reported to be common historically. Repeated sightings of smalltooth sawfish over 14 years (half a generation time) in the recovery regions identified in the accompanying recovery criteria areas are required before downlisting or delisting can occur.

If a scientifically robust PVA model for the U.S. DPS of smalltooth sawfish is available that provides additional information and greater certainty that the species can be safely downlisted or delisted it should be used. PVAs have been used effectively in recovery planning for other species as a tool to help assess extinction risk and develop recovery criteria. However, some efforts to develop or interpret PVAs have run into difficulties.

Downlisting criteria

i. In recovery regions G, H, I, J, and K and at least one other recovery region the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] either is increasing at an average annual rate of at least 5% over a 27-year period or is at greater than 80% of carrying capacity.

ii. Relative abundance of adult smalltooth sawfish in combined recovery regions J through L (east coast of Florida) has increased to a level at least 15-times higher than the level at the time of listing, and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

iii. Relative abundance of adult smalltooth sawfish in combined recovery regions F through H (west coast of Florida) has increased to a level at least 15-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

iv. Verified records of adult smalltooth sawfish are observed in 12 out of 14 years, with consecutive records occurring in the last 3 years in recovery regions M or N, and in at least one of recovery regions A, B, C, or D.

Delisting criteria

i. In addition to the 6 downlisting recovery regions (G, H, I, J, and K and one additional region), the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] in 3 other recovery regions, at least one of which must be west of Florida, is either increasing at an average annual rate of at least 5% over a 27-year period or at greater than 80% of carrying capacity.

ii. In recovery regions G, H, I, J, and K and at least 4 other recovery regions, one of which must be west of Florida, the relative abundance of small juvenile smalltooth sawfish [24 in (<200 cm)] is stable or increasing over a period of 14 years following downlisting.

iii. Relative abundance of adult smalltooth sawfish [males 106 in (> 270 cm) and females 142 in (>360 cm)] in combined recovery regions J through L (east coast of Florida) is at least 20-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

iv. Relative abundance of adult smalltooth sawfish [males 106 in (> 270 cm) and females 142 in (>360 cm)] in combined recovery regions F through H (west coast of Florida) is at least 20-times higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.
higher than the level at the time of listing and greater than 95% certainty that abundance at this level has been sustained for a period of at least 14 years.

v. Verified records of adult smalltooth sawfish are observed in 12 out of 14 years, with consecutive records in the last 3 years, in recovery regions M or N, and in at least one of recovery regions A, B, C, or D.
IV. RECOVERY PROGRAM

The recovery program for the smalltooth sawfish describes the recovery actions that were determined to be necessary to achieve the plan’s goals and objectives. This section of the plan is comprised of the recovery action narrative and the implementation schedule. The recovery action narrative describes in detail the specific recovery actions. The implementation schedule states the recovery priority associated with each action, the responsible parties, the estimated time to complete the action, the estimated cost to complete the action, and the timeframes to complete the actions. NMFS believes that the recovery plan should be a dynamic document that will change over time based on progress of recovery and the availability of new information. As new information is obtained, additional actions will be identified and incorporated into the plan. As is the case for all recovery plans under the ESA, this plan will be regularly reviewed and the relative success of these actions in protecting smalltooth sawfish assessed. Adjustments will be made and/or additional actions will be added accordingly.

The objectives of the Smalltooth Sawfish Recovery Plan are:

Objective 1. Minimize human interactions, and injury and mortality associated with human interactions.

Objective 2. Protect and/or restore smalltooth sawfish habitats.

Objective 3. Ensure smalltooth sawfish abundance increases substantially and reoccupies areas from which they had been previously extirpated.
A. Recovery Action Narrative

1. Minimize human interactions, and injury and mortality associated with human interactions.

1.1 Prevent or reduce mortality of the species in fisheries to ensure their long-term viability.

Bycatch in a variety of fisheries was the primary cause of the decline of the species. Minimizing mortality from fisheries is essential for sawfish recovery. Related remedies will involve actions or techniques for all fisheries, as well as gear specific measures. Implementation of a strategy to reduce sawfish bycatch and mortality should include means to monitor the effectiveness and the contribution to recovery of the new measures.

All commercial and recreational fisheries.

In considering the effect of fishing on the species, it is important all types of fishing be considered together, as well as on an individual basis. Initially, it will be important to gather information on the current level of sawfish take and the fate of animals caught. Encounter databases should continue to provide data related to fishery catches, especially by the recreational sector. Monitoring and observer programs should also be implemented for commercial and recreational fisheries to provide quantitative estimates of take and fate. The many existing commercial observer programs for fisheries that take smalltooth sawfish should be used to assist in monitoring efforts. Training of observers in data collection, handling, safe release, and other aspects of sawfish conservation will be required. Research to determine the post-release mortality of sawfish from a variety of fishing gears should be undertaken. These studies could involve tagging, tracking, and electronic tagging of animals, potentially in collaboration with sawfish population monitoring programs. Data from the observer and monitoring programs and post-release mortality studies should be used in population assessments (e.g., PVA models) to determine the effect of sawfish takes on the population, and calculate levels of take that would allow the recovery criteria to be met. Data from observer and monitoring programs should be used to identify areas where there are significant interactions between fisheries and sawfish. Based on the analysis of the effect of takes on sawfish in these areas, appropriate restrictions should be implemented. Specific fishing gears that should be investigated are trawl, longline, and recreational line fishing.

Work with federal and state agencies that regulate fisheries to implement regulations that allow for the recovery of the smalltooth sawfish. Necessary measures may be specific (such as time-area closures) or general (such as broad reductions in fishing capacity). The SSRT identified the implementation of conservation plans by states (especially Florida in the early stages of recovery) under section 10(a)(1)(B) of the ESA as a priority action with significant potential to enhance recovery. Given that sawfish are often observed with old fishing gear entangled on their saw or other parts of their body, the SSRT should work with agencies (e.g., NOAA’s Marine Debris Program) and conservation groups to minimize and mitigate the impact of discarded or lost fishing gear.

1.1.1 Monitor the take and fate of the species in commercial and recreational fisheries throughout the species’ range.

1.1.2 Improve the capacity and geographic coverage of the sawfish encounter data collection program to enable full investigation, review, and evaluation of each report of smalltooth sawfish fishery interactions.
1.1.3 Determine the post-release mortality of smalltooth sawfish from various types of fishing gear.

1.1.4 Integrate collection of data on smalltooth sawfish into current commercial fishery observer programs and implement new programs where required.

1.1.5 Integrate collection of data on smalltooth sawfish into current recreational fishing creel surveys and implement new program where required.

1.1.6 Implement and adequately fund observer programs over the long-term.

1.1.7 Use PVA or other types of population models to evaluate the effect of fishery takes on the species’ viability.

1.1.8 Implement strategies to reduce bycatch, mortality, and injury, specific fisheries to ensure the species’ viability.

1.1.9 Encourage the FWC, the Atlantic and Gulf States Marine Fisheries Commissions, and/or other appropriate state entities, to develop and implement conservation plans as described under the ESA section 10(a)(1)(B) for state managed fisheries that incidentally take smalltooth sawfish.

1.1.10 Develop and implement programs, in cooperation with other interested parties, to assess, minimize, and mitigate the effects of lost fishing gear.

Longline fisheries

Observer data from the commercial shark longline fishery indicate occasional capture of large sawfish. A number of procedures that could be used by longline fishermen to facilitate the safe release of sawfish have been identified (G. Burgess, Florida Museum of Natural History; J. Carlson, National Marine Fisheries Service). The SSRIT should work with state and federal resource management agencies to have these guidelines included in regulations for longline fisheries. In addition, research to identify ways to reduce the capture and harm of smalltooth sawfish during longline fishing should be pursued. Where sawfish bycatch reduction techniques and/or gear modifications are identified, the SSRIT should work with management agencies to ensure prompt implementation.

1.1.12 Monitor longline fisheries to ensure that they do not threaten the viability of the population.

1.1.13 Reduce mortality by using dehookers, line cutters, and investigate the use of corrodible circle hooks, as well as training in their use, for all commercial bottom longline vessels.

1.1.14 Investigate fishing modifications, devices and techniques that may work to avoid interaction with smalltooth sawfish and/or enhance the likelihood of successful release of healthy sawfish.
1.1.15 Require fishing devices, modifications, and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of hooking them in areas frequented by sawfish, other important sawfish habitats, and in longline fisheries encountering significant numbers of sawfish.

Trawl fisheries

Available data on interactions between trawl fisheries and the U.S. DPS of smalltooth sawfish are very limited, but shrimp trawl fisheries are associated with high sawfish mortality per interaction. Data from other parts of the world (e.g., Australia’s Northern Prawn Fishery) indicates that sawfish are commonly taken in shrimp trawls. Thus, to facilitate recovery efforts methods to reduce the take or harm of smalltooth sawfish in trawls should be researched, tested, and implemented as warranted.

1.1.16 Monitor trawl fisheries to ensure they do not threaten the viability of the population.

1.1.17 Investigate fishing devices, gear modifications, and techniques (physical, electronic, chemical, net configuration, etc.) that reduce the likelihood of sawfish capture, improve the chances of sawfish escapement, minimize harm to sawfish and humans from capture, and facilitate successful release of healthy sawfish.

1.1.18 Recommend the use of fishing devices, gear modifications, and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of capture in areas frequented by sawfish, other important sawfish habitats, and in trawl fisheries encountering significant numbers of sawfish.

Gillnet Fisheries

Gillnet fisheries are believed to have been a major cause of the decline of smalltooth sawfish. In the mid-1990s, Florida banned entangling nets (including gillnets) in all state waters. Any reversal or weakening of this ban would have a significant detrimental effect on the recovery of the smalltooth sawfish population. The SSRIT should therefore work to ensure that this ban remains in place. Gillnets used in other states and in Federal waters may also contribute to mortality of smalltooth sawfish. Given the current limited distribution of smalltooth sawfish, it is unlikely use of such gear outside Florida is currently of any significance to the species. However, as recovery of the population proceeds, gillnet fisheries outside Florida waters will become an increasing threat to sawfish recovery. Thus, action to minimize the potential for capture of sawfish in gillnets throughout their range should be pursued. Research on techniques that reduce the capture and/or harm of sawfish in gillnets should also be undertaken. Methods and/or modifications that are identified as useful to recovery efforts should be promptly implemented by state and federal management agencies.

1.1.19 Monitor gillnet fisheries to ensure they do not threaten the viability of the population.

1.1.20 Regulate gillnet fisheries in state waters to minimize sawfish bycatch.

1.1.21 Regulate gillnet fisheries in federal waters to minimize sawfish bycatch.

1.1.22 Continue to investigate avenues to reduce the risk of capture, injury, and mortality in gillnet fisheries.
1.1.23 Recommend the use of fishing devices, modifications, and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of entanglement in areas frequented by sawfish, other important sawfish habitats, and in gillnet fisheries encountering significant numbers of sawfish.

1.1.24 Continue to minimize gillnet effects by gillnet bans in Florida.

Recreational fisheries

Recreational fishing currently accounts for the highest known take levels of smalltooth sawfish within U.S. waters. Encounter database reports indicate that the vast majority of captured sawfish are released, probably unharmed. However, given the size and importance of the fishery, it is vital to research methods for reducing the impact of sawfish capture. In particular the effectiveness of corrodible and/or circle hooks for conserving sawfish should be investigated. Other techniques to reduce the chances of sawfish capture and/or associated harm should also be explored. Techniques identified as effective should be implemented through recreational fishing regulations and publicized.

1.1.25 Monitor recreational fisheries to ensure they do not threaten the viability of the population.

1.1.26 Investigate and, if practical, require devices that reduce the capture, injury, and mortality from recreational fisheries (e.g., corrodible and circle hooks).

1.2 Monitor trade to ensure trade in sawfish and sawfish parts does not threaten the long-term viability of the population.

Trade in sawfish and sawfish parts is poorly documented. However, it is known that sawfish fins and saws attract high prices in Asian markets where they are used for shark fin soup and traditional medicine, respectively. While it is unlikely that trade in sawfish or sawfish parts from the U.S. DPS of smalltooth sawfish is currently significantly detrimental, removing the incentive to kill sawfish by ending trade in sawfish parts will be increasingly important as the population recovers. One well-investigated aspect of sawfish trade is the auction of parts through internet sites catering to individual sellers. eBay, a major internet auction site, agreed in January of 2006 to ban all sales of smalltooth sawfish parts on their site. Enforcement of sawfish trade prohibitions on the internet and traditional wildlife markets will require vigilance. Public aquaria engage in a small amount of trade in live sawfish originally from Florida for display; almost all of today’s aquarium trade involves specimens from Australia. The trade in sawfish for aquaria should be carefully monitored to ensure that it does not reduce the viability of the U.S. DPS.

1.2.1 Develop a strategy to secure listing of sawfish under Appendix I of CITES.

1.2.2 Ensure enforcement of prohibitions of illegal sales of smalltooth sawfish on auction outlets, if any.

1.2.3 Investigate and prosecute persons engaging in interstate commerce of smalltooth sawfish, if any.
1.2.4 Monitor the aquarium community and the American Zoo and Aquarium Association to ensure that movement and/or trade in sawfish currently in captivity, or their progeny, does not threaten the long-term viability of the population.

1.3 Minimize interactions, injury, and mortality through outreach and education.

One of the cornerstones of the recovery strategy for the species is the minimization of sawfish bycatch mortality in commercial and recreational fisheries. There are no directed fisheries for sawfish. Education is key to reducing mortality from incidental catch in fisheries and other human interactions. Education of the public, especially those sectors that potentially interact with smalltooth sawfish, is an important factor in the recovery strategy for smalltooth sawfish. Information related to the plight of the sawfish population, the need for conservation measures, and what citizens can do to help save this endangered species will all be important to changing human behavior. There are many government agencies, conservation organizations, fishing groups, and commercial enterprises that can assist in educational efforts. The SSRIT should cooperate with these groups in developing an education plan aimed at improving sawfish survival.

Because fishermen are the group most likely to encounter smalltooth sawfish and have the greatest potential to cause mortality, the development of handling and release guidelines offers a substantial benefit to recovery. A set of draft guidelines has already been developed and designed for minimizing harm to sawfish and fishermen. These guidelines should be finalized and subsequently distributed as widely as possible to both commercial and recreational fishermen. The guidelines should be included in fishery management plans and operational procedures wherever possible. The SSRIT should work with agencies, such as NOAA’s Sea Grant, which have extensive networks, to achieve broad distribution.

1.3.1 Develop programs and materials to educate the public about smalltooth sawfish status and protections, with a focus on groups most likely to encounter this species (e.g., fishers, divers, boaters).

1.3.2 Develop safe handling and husbandry guidelines for sawfish, and related educational materials.

1.3.3 Develop, distribute, and implement Safe Handling and Release Guidelines for smalltooth sawfish for commercial and recreational fisheries to minimize interactions, injury, and mortality.

1.3.4 Improve effective implementation of safe handling and release through information distribution and training seminars associated with recreational and commercial fishing events, trade shows, tackle and bait shops, boating stores, and related outlets.

1.4 Reduce threats from research efforts.

Research activities, whether targeted at sawfish or not, have the potential to threaten the population. Currently, research targeting sawfish is prohibited unless NMFS issues an ESA research permit. NMFS evaluates permit applications for sawfish research with a view toward ensuring that the research has no detrimental impact on the population. As the population recovers, an increasing number of researchers will encounter sawfish incidentally. Training
materials, including handling guidelines should be developed to ensure such encounters end with careful release of healthy sawfish and the proper recordings of appropriate information.

1.4.1 Monitor mortality of the species from both targeted and non-targeted research programs.

1.4.2 Develop standardized research protocols for authorized smalltooth sawfish researchers to ensure that studies are coordinated, that take for research is minimized and associated harm is minimized, and that cumulative effects are considered.

1.4.3 Develop a training course for researchers who handle sawfish to ensure minimization of injury and mortality in research activities.

1.5 Develop non-ESA protection measures and a post-delisting monitoring plan.

Once a species is delisted, statutory and regulatory protections provided by the ESA are lifted. The SSRIT should work with federal, state, and local agencies to ensure that appropriate protections for sawfish, necessary to prevent the population from once again becoming threatened or endangered, remain in place after delisting.

1.5.1 Develop protective measures with state, local, and other appropriate agencies that will continue after the ESA protections are removed.

1.5.2 Develop a five-year post-delisting monitoring plan as required by ESA(4)(g).

2. Protect and/or restore smalltooth sawfish habitats.

2.1 Ensure that nursery habitat of sufficient size and quality exists to enable the recovery of the species.

Juvenile sawfish, especially those less than 24 in (200 cm) in length, have strong links to specific coastal and estuarine habitats (see Distribution and Habitat Use Section). To enable recovery of the species, the nursery habitats used by juvenile sawfish need to be protected and in some cases restored. Without sufficient high quality habitat, survival rates of juvenile sawfish will be below those which will enable the population to recover to a level where it is no longer endangered or threatened. Research on the habitat requirements of juvenile smalltooth sawfish has focused in southwest Florida in the core of the current range, and has identified mangroves as an important component of sawfish nursery areas. However, encounter report databases (e.g., Simpfendorfer and Wiley 2005) have demonstrated that small juvenile sawfish occur in areas north of where mangroves can grow because of physiological constraints (approximately 29ºN). Thus there is a need to expand research to identify important components of sawfish nursery habitats in these areas.

Research to identify nursery habitats throughout the current and historic range of smalltooth sawfish will be important for the planning and implementation of recovery efforts. For the purposes of this document, the year 1940 is the baseline for sawfish habitats because mapping coverages from this year appear to be the most encompassing. Public encounter databases will provide preliminary data on the occurrence of juvenile smalltooth sawfish in areas in and outside of the normal range of mangroves. This information can then be used to focus surveys to better understand the habitat needs of sawfish in these areas. Habitat modeling may also provide the
ability to predict important nursery habitats in areas that sawfish currently do not occupy in sufficient numbers to be suitable for surveys. This approach would allow habitat conservation efforts to work ahead of population recovery and ensure that habitat availability is not limiting sawfish rebuilding. Finally, coastal development (e.g., shoreline habitat modification or removal, seawalls, canals, dredge and fill, and channelization) has occurred throughout much of the historic range of smalltooth sawfish. Research on the effects of this development on juvenile sawfish, especially in relation to their survival, is required to understand the carrying capacity of nursery habitats.

2.1.1 Conduct surveys throughout the current range of the species to determine the locations of current potential nursery habitats.

2.1.2 Determine which habitats, apart from shoreline mangroves, are currently used as nursery areas.

2.1.3 Construct habitat models based on survey data to identify potential nursery habitats in areas unsurveyed or outside of the current range.

2.1.4 Document the effect of coastal development on use of nursery habitats by juveniles.

2.1.5 Estimate the historic distribution of native shoreline habitats throughout the core range of smalltooth sawfish.

2.1.6 Estimate the proportion of native shoreline habitats at the time of listing compared to historic levels.

2.1.7 Monitor losses and gains of mangrove shoreline habitat in recovery regions G, H, I, J, and K.

2.1.8 Restore mangrove shoreline habitats in recovery regions where levels are insufficient.

2.1.9 Ensure that appropriate regulations are in place to protect (and potentially recover) mangrove shoreline habitats in recovery regions G - K.

2.1.10 Monitor losses and gains of nursery habitats, apart from shoreline mangroves, in all recovery regions.

2.1.11 Restore non-mangrove nursery habitats in all recovery regions.

2.1.12 Ensure that appropriate regulations are in place to protect (and potentially recover) non-mangrove nursery habitats in all recovery regions.

2.2 Minimize the disruption of natural/historic freshwater flow regimes (including timing, quality, and quantity) and maintain or restore water quality.

Public encounter databases and surveys have shown that juvenile sawfish occur most frequently in euryhaline (estuarine) areas. However, there is insufficient information to determine the level of importance of lower salinity areas to smalltooth sawfish. Thus there is a need to conduct research on the salinity tolerances and preferences of juvenile smalltooth sawfish. In addition to research on salinity, other water quality preferences, if any (e.g., temperature, dissolved oxygen,
pH), of sawfish should also be explored. On the basis of the research results it may be necessary to regulate salinity levels within nursery areas for smalltooth sawfish. Because salinity levels in estuaries are mostly a function of freshwater flow rates, it may be necessary to regulate flow levels where it is possible.

Research on the salinity preferences and tolerances of smalltooth sawfish using both laboratory and field studies will enable the determination of optimum water quality conditions for sawfish. Research on bull sharks (a euryhaline shark that occurs in many of the same habitats as juvenile smalltooth sawfish) has demonstrated changing salinity preferences during juvenile phases (e.g., Simpfendorfer et al. 2005); similar research should be conducted for a variety of sizes of smalltooth sawfish. Research should explore the upper and lower bounds of salinity that are tolerated and detrimental to sawfish in the short and long term. Laboratory experiments on the bioenergetics of smalltooth sawfish at varying salinity levels will enable the determination of conditions that would be physiologically suitable for sawfish growth and survival.

Once research has identified the optimal water quality conditions for smalltooth sawfish, authorities must be encouraged to include them in relevant regulations. The many existing monitoring systems for water quality throughout the current and historic range of smalltooth sawfish should be used to monitor conditions with respect to sawfish. The SSRIT should work with federal, state, and local agencies responsible for regulating and permitting freshwater flows and withdrawals and water quality to ensure that environmental conditions are maintained at levels suitable for sawfish survival and recovery. In particular, the SSRIT should ensure that work conducted under the Comprehensive Everglades Restoration Program fully accounts for the recovery needs of smalltooth sawfish.

2.2.1 Determine salinity preferences and tolerances of juveniles of all sizes using laboratory experiments.

2.2.2 Monitor the salinity and other water quality preferences of juveniles in the field.

2.2.3 Monitor freshwater flow into, and salinity of, nursery habitats in all recovery regions.

2.2.4 Evaluate whether regulations are in place to maintain appropriate water quality in sawfish nursery habitats.

2.3 Identify and protect the habitats (particularly mating and pupping areas) of adult smalltooth sawfish.

Unlike juvenile smalltooth sawfish, which have specific habitat requirements, adults appear to have broader habitat use patterns and move over large distances, occurring from shallow coastal areas to deeper outer shelf areas. Thus, recovery efforts that focus on protecting habitats in which adults occur will have to be focused on specific areas, potentially those where they aggregate to mate, give birth, or feed. Research currently underway is providing some information on the distribution, habitat requirements, and movement patterns of adult smalltooth sawfish; much more information is needed to assist in recovery efforts. Specific areas where adults occur and are potentially vulnerable to threatening processes (e.g., habitat loss, fishing) may need to be protected.

Research to document the distribution, habitat requirements, and movement patterns of adult smalltooth sawfish is required to advance recovery efforts. Habitats where adults aggregate for
processes such as mating, pupping, and feeding may be the most beneficial to explore in terms of protection. Research has already identified some of these areas, and further work will reveal more. Surveys and public encounter databases can provide information on the distribution of adults. The area around the Florida Keys, in particular, should be investigated to determine if it represents an important winter habitat for smalltooth sawfish. Tagging and tracking studies will provide critical information on habitat requirements and movement patterns. Adult sawfish are known to migrate seasonally along the U.S. east coast. These migrations should be studied using electronic tagging technology to determine migratory pathways, environmental cues (especially temperature) that may regulate their onset, and the proportion of the population from different regions that undertake them. Habitat models based on research data will provide important abundance and distribution information.

As soon as adult habitats that are important to recovery of smalltooth sawfish are identified they should be regularly monitored and protected in some manner. In some situations recovery may be aided by restoration of the habitat in these areas. The SSRIT should work with federal, state and local agencies responsible for regulating use of these habitats to develop appropriate regulations to ensure smalltooth sawfish recovery.

2.3.1 Conduct surveys throughout the current range of smalltooth sawfish to determine the distribution of adult smalltooth sawfish and identify habitats of aggregation or local abundance.

2.3.2 Investigate short-term movement patterns of adult sawfish to provide information on habitat use patterns.

2.3.3 Investigate the seasonal migrations of adults along the U.S. east coast and in the Gulf of Mexico, including documenting the temperature tolerances that may drive these patterns.

2.3.4 Investigate seasonal patterns of occurrence and habitat use of adults.

2.3.5 Construct habitat-based movement models to identify seasonal changes in crucial habitat areas for adults.

2.3.6 Monitor abundance of adult smalltooth sawfish in aggregation areas.

2.3.7 Monitor changes in habitat and environmental parameters in aggregation areas.

2.3.8 Restore degraded habitats in aggregation areas if determined necessary for recovery.

2.3.9 Ensure appropriate regulations are in place to protect adult aggregation habitats.

3. Ensure smalltooth sawfish abundance increases substantially and reoccupies areas from which they had been previously extirpated.

3.1 Investigate the relationship (movements) between the U.S. DPS of smalltooth sawfish and populations in surrounding countries and coordinate conservation and recovery efforts to ensure they do not hinder the U.S. recovery efforts.

This recovery plan deals explicitly with the U.S. DPS of smalltooth sawfish. However, smalltooth sawfish occur off countries adjacent to the U.S.A., including Mexico, Cuba, the
Bahamas, and other Caribbean nations. Currently, data are insufficient to determine the relationships among the U.S. DPS of smalltooth sawfish and the populations in these other countries’ waters. If there is movement among these populations then activities in other countries may negatively affect the U.S. DPS, thereby hindering U.S. recovery efforts.

There is need for research into the relationship, if any, between the U.S. DPS of smalltooth sawfish and the sawfish that occur in nearby countries. Two potential avenues of investigation have been used in other species of elasmobranches – tagging and genetic comparisons. Genetic techniques are currently being used to investigate the population genetics of smalltooth sawfish (V. Faria, pers. comm.) and the collection of genetic material from outside of the U.S. DPS would enable comparisons to be made. Genetic studies will need to include the use of appropriate techniques and sample sizes to allow differences to be sufficiently resolved if they exist. Tagging studies using conventional identification tags can provide a direct indication of movement between countries, but can require the release of a large number of tags if exchange rates are low. Newer electronic tagging technology, especially popup satellite archival tags (PSAT) that would detach from sawfish after preset periods and report their location may offer a more effective approach. While PSAT tags are expensive, far fewer are required to be released and they do not rely on recapture to obtain the data. Tagging (conventional or electronic) in both the U.S. and surrounding countries would be required to determine exchange rates into or out of the U.S.

3.1.1 Conduct genetic comparisons between the U.S. DPS and populations in surrounding countries.

3.1.2 Establish and continue tagging studies (Gulf of Mexico and Caribbean).

3.1.3 Encourage protection of smalltooth sawfish and their habitats and promote the reduction of sawfish bycatch in neighboring countries.

3.2 Determine that sufficient numbers of adult smalltooth sawfish exist to ensure recovery.

Adult sawfish provide the reproduction that is required to ensure the viability of the species. It is imperative that the numbers of adult sawfish are effectively monitored to ensure that the population recovers. The recovery plan calls for two levels of monitoring of the adult population: intensive monitoring off the east and west coasts of Florida in the core of the distribution and qualitative monitoring in the peripheral sections of the range.

Data on the distribution and abundance of smalltooth sawfish in U.S. waters is currently limited. Public encounter databases currently provide the best data on distribution but are not useful in estimating abundance. Surveys to identify areas where adults regularly occur are required to inform the design of monitoring programs. Using existing monitoring programs for other species will be the most efficient way to monitor the adult sawfish population. Existing survey programs (both fishery-independent and fishery observer programs) should be evaluated to determine if they can be expanded to incorporate sawfish monitoring. If existing programs cannot meet the requirements or are otherwise incompatible, then specialized monitoring systems for adult sawfish will need to be implemented. All actions related to the investigation of the changes in size of the smalltooth sawfish population are described in terms of relative abundance because of the difficulties associated with determining absolute abundance with a rare, widely dispersed, benthic species.
Monitoring programs in the Gulf of Mexico and Atlantic will be required to measure and track the abundance of adult smalltooth sawfish. Surveys should be conducted annually and the data analyzed and compared to the recovery criteria.

This recovery plan also requires that the species occur in peripheral sections of their historic range as a condition for delisting. Several different approaches to monitoring sawfish occurrence in these areas are possible, given that there is no requirement to determine abundance. Possible approaches to determining the occurrence of smalltooth sawfish in the peripheral sections of their range include tagging studies, public encounter databases, and fishery surveys (both fishery-independent and fishery-dependent). The approach that is potentially the most straightforward uses information from the public encounter databases, but it would require the ongoing evaluation of monitoring techniques. The use of electronic tags, especially PSAT technology, holds promise for demonstrating the occurrence of adult sawfish in peripheral areas without requiring any physical presence (observers, encounters, surveyors, etc.) in the region. A combination of these approaches may ultimately be required to determine when recovery criteria related to sawfish occurrence in outlying areas are met.

3.2.1 Assess the east and west coasts of Florida to determine the most appropriate location and timing of surveys for adult smalltooth sawfish.

3.2.2 Evaluate fishery observer programs to determine their suitability to act as surveys of relative abundance of adult smalltooth sawfish.

3.2.3 Evaluate state and federal fishery-independent monitoring programs to determine their suitability to act as surveys of relative abundance of adult smalltooth sawfish.

3.2.4 Conduct regular surveys to determine the relative abundance of smalltooth sawfish off the east and west coasts of Florida.

3.2.5 Analyze annual relative abundance data for adult smalltooth sawfish and determine if it meets the criteria in Objective 3.

3.2.6 Conduct tagging studies, potentially using satellite and/or archival technology, to study seasonal migrations along the U.S. east coast and within the Gulf of Mexico.

3.2.7 Maintain an effective public reporting system with outreach efforts throughout the historic range, with special efforts focused on the north central Gulf of Mexico, Georgia, South Carolina, and North Carolina.

3.2.8 Assess research survey and fishery independent monitoring datasets to obtain records of adult smalltooth sawfish in the north central Gulf of Mexico, Georgia, South Carolina, and North Carolina.

3.3 Develop a spatially-structured PVA for the species and estimate extinction probabilities.

PVA is a common method used to determine the extinction risk (or quasi-extinction risk) of a species. To build an effective PVA model requires the collection of a large amount of data on biological, habitat and fishery aspects of smalltooth sawfish. Once the data have been collected and the model constructed it should be thoroughly tested and externally reviewed by an independent internationally-recognized expert(s) to ensure that it provides reliable estimates.
the event that the PVA model does not provide estimates with sufficient certainty it should not be used to evaluate recovery criteria. However, it may, if desired, be used for planning purposes to evaluate conservation and management alternatives.

3.3.1 Collect life history data, including age, growth, fecundity, and natural mortality.

3.3.2 Determine movement rates by size class between recovery regions.

3.3.3 Identify and collect other biological or ecological data as required for the PVA.

3.3.4 Collect information on catches and mortality in recreational and commercial fisheries for use in the PVA.

3.3.5 Build a spatially structured PVA model for smalltooth sawfish.

3.3.6 Obtain independent international scientific review of the PVA model and analysis.

3.4 Determine that sufficient numbers of juvenile smalltooth sawfish exist to ensure recovery and that sufficient nursery areas are occupied to protect against stochastic events.

Like many species of sharks and rays, smalltooth sawfish use specific habitats commonly referred to as nursery areas. Research to date has identified a number of factors that are believed to be important in identifying nursery areas for smalltooth sawfish; these include depths less than one meter, mangrove shorelines, and euryhaline salinity regimes (Simpfendorfer and Wiley 2005, in review). Further research, however, is required to better understand the role and importance of nursery areas for smalltooth sawfish.

The occurrence of juvenile sawfish in nursery areas is an indicator of successful breeding and recruitment in the population. Although mortality rates (both natural and from human influence) for smalltooth sawfish are poorly known, only a small proportion of the animals born reach maturity and so contribute to future reproduction. It will be important to monitor the abundance of juvenile smalltooth sawfish to determine if sufficient recruitment is occurring to sustain the population. Given that specific nursery areas are occupied and that there is likely to be a high level of dependence on these habitats for survival, it will be important that recovery is not reliant on the continued existence of just a few nursery areas. Stochastic natural disasters such as hurricanes and red tides occur through much of the range of the species and could lead to widespread mortality of juveniles. Thus, to adequately recover the population, it will be necessary to ensure that sufficient nursery areas are available.

Research to date has identified nursery areas in the core of the current range of the species. Public encounter databases show the potential current distribution of smalltooth sawfish nursery areas, but only those in the core of the range have been surveyed to any extent. To develop an effective monitoring program for juvenile smalltooth sawfish, there is a need to determine the areas and times of the year to be monitored. This will require thorough, wide-spread surveys to document the full extent of nursery areas in the current range and determine when juveniles are present through the year. In addition, research into juvenile sawfish use of nursery habitats, their level of site fidelity, and movement patterns will be needed to properly design the juvenile monitoring program. Finally, research to determine the carrying capacity of nursery areas is required to evaluate some of the recovery criteria. Determination of carrying capacity will
depend on estimating the density of juvenile sawfish that a given area or other measure of habitat (e.g., kilometers of mangrove shoreline) can support over the long-term.

Techniques to measure the abundance of smalltooth sawfish need to be in place to determine when recovery criteria related to juvenile abundance have been met. Given the long timeframes that are likely to be involved with smalltooth sawfish recovery, standardized protocols that can be compared over the long-term will be essential. The most efficient way to implement these protocols would be as part of monitoring systems that already exist. The SSRIT should work with state and federal agencies responsible for fishery-independent monitoring programs in smalltooth sawfish nursery areas to determine if these programs can be modified to collect relevant abundance data. The efficiency of gear currently used, and the potential for other types of gear, should be assessed to ensure that monitoring protocols are the most efficient and reliable. If existing programs cannot meet the requirements or are otherwise incompatible, then specialized monitoring systems for adult sawfish will need to be implemented.

Monitoring the relative abundance of juveniles in each of the designated recovery regions will be essential for determining when they reach the levels specified in the recovery criteria. Surveys will need to occur regularly and the data promptly analyzed to determine if criteria are being met.

3.4.1 Determine the habitat use patterns, site fidelity and movement patterns (including seasonal) of juveniles of all sizes in nursery habitats.

3.4.2 Determine the carrying capacity of nursery habitats in each of the recovery regions used to meet the criteria in Objective 3.

3.4.3 Determine the most appropriate time of year to carry out surveys for juvenile smalltooth sawfish in each of the recovery regions used to meet the criteria in Objective 3.

3.4.4 Compare efficiency of different types of gear (e.g., gillnets, seine nets) to identify most appropriate type of monitoring gear of juvenile smalltooth sawfish.

3.4.5 Evaluate state and Federal agency fishery-independent monitoring programs for their potential to act as measures of juvenile relative abundance.

3.4.6 Conduct annual surveys to determine the relative abundance of juvenile sawfish numbers in nursery habitats in each of the recovery regions used to meet the criteria in Objective 3.

3.4.7 Analyze trends in annual relative abundance of juvenile sawfish and determine if the annual rate of increase meets the conditions set in the criteria.
B. Implementation Schedule

An implementation schedule is used to direct and monitor implementation and completion of recovery tasks. Priorities in column 1 of the following implementation schedule are assigned as follows:

Priority 1 – An action that must be taken to prevent extinction or to prevent the species from declining irreversibly.

Priority 2 – An action that must be taken to prevent a significant decline in population numbers or habitat quality, or to prevent other significant negative impacts short of extinction.

Priority 3 – All other actions necessary to provide for full recovery of the species.

Funding is estimated according to the number of years necessary to complete the task once implementation has begun. Estimates are based on information available at the time this plan was finalized; the amount needed to actually complete the task may change as specific actions are pursued. The provision of cost estimates is not meant to imply that appropriate levels of funding will necessarily be available for all smalltooth sawfish recovery tasks. Parties with authority, responsibility, or expressed interest to implement a specific recovery action are identified in the implementation schedule. The listing of a party in the implementation schedule does not require the identified party to implement the action(s) or to secure the funding for the implementing action(s). The costs associated with the various recovery tasks listed below are for those to be implemented in U.S. waters only. Costs associated with promotion of international action have not been estimated.

Disclaimer

The Implementation Schedule that follows outlines actions and estimated costs for the recovery program for the smalltooth sawfish, as set forth in the plan. It is a guide for meeting the recovery goals outlined in the plan. This schedule indicates action priorities, action numbers, action descriptions, duration of actions, the parties responsible for actions (either funding or carrying out) and estimated costs. Parties with authority, responsibility, or expressed interest to implement a specific recovery action are identified in the Implementation Schedule. The listing of a party in the Implementation Schedule does not require the identified party to implement the action(s) or to secure funding for implementing the actions(s).
<table>
<thead>
<tr>
<th>Priority</th>
<th>Action</th>
<th>Action Description</th>
<th>Duration</th>
<th>Responsible Parties</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>Prevent or reduce mortality of the species' in fisheries to ensure its long-term viability.</td>
<td>Long-term</td>
<td>NMFS, FWC, other state fishery agencies</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1.1</td>
<td>Monitor the take and fate of smalltooth sawfish in commercial and recreational fisheries throughout the species' range.</td>
<td>Long-term</td>
<td>NMFS, FWC, MML, FMNH</td>
<td>75K 75K 75K</td>
</tr>
<tr>
<td>2</td>
<td>1.1.2</td>
<td>Improve the capacity and geographic coverage of the sawfish encounter data collection program to enable full investigation, review and evaluation of each report of smalltooth sawfish fishery interactions.</td>
<td>Long-term</td>
<td>NMFS, FWC, MML, FMNH</td>
<td>75K 75K 75K</td>
</tr>
<tr>
<td>2</td>
<td>1.1.3</td>
<td>Determine the post-release mortality of smalltooth sawfish from various types of fishing gear.</td>
<td>3 years</td>
<td>NMFS, MML, FWC</td>
<td>75K 75K 75K</td>
</tr>
<tr>
<td>1</td>
<td>1.1.4</td>
<td>Integrate collection of data on smalltooth sawfish into current commercial fishery observer programs and implement new programs where required.</td>
<td>Long-term</td>
<td>NMFS, FWC, other state fishery agencies</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>1.1.5</td>
<td>Integrate collection of data on smalltooth sawfish into current recreational fishing creel surveys and implement new program where required.</td>
<td>Long-term</td>
<td>NMFS, FWC, other state fishery agencies</td>
<td>TBD</td>
</tr>
<tr>
<td>2</td>
<td>1.1.6</td>
<td>Implement and adequately fund programs over the long term.</td>
<td>Long-term</td>
<td>NMFS, State fishery agencies</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>1.1.7</td>
<td>Use PVA or other types of population models to evaluate the effect of fishery takes on the species' viability.</td>
<td>2 years</td>
<td>NMFS, MML</td>
<td>15K 15K</td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Estimated Cost</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>1.1.8</td>
<td>Implement strategies to reduce bycatch, mortality, and injury, specific fisheries to ensure the species’ viability.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>1.1.9</td>
<td>Encourage the FWC, the Atlantic and Gulf States Marine Fisheries Commissions and/or other appropriate state entities, to develop and implement conservation plans as described under the ESA section 10(a)(1)(B) for state managed fisheries that incidentally take smalltooth sawfish.</td>
<td>2 years</td>
<td>NMFS</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>1.1.10</td>
<td>Develop and implement programs, in cooperation with other interested parties to assess, minimize and mitigate the effects of lost fishing gear.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>1.1.12</td>
<td>Monitor longline fisheries to ensure they do not threaten the viability of the population.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>1.1.13</td>
<td>Reduce mortality by using dehookers, line cutters, and investigate the use of corrodible circle hooks, as well as training in their use, for all commercial bottom longline vessels.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, Atlantic and Gulf States Fisheries Commissions</td>
</tr>
<tr>
<td>2</td>
<td>1.1.14</td>
<td>Investigate fishing modifications, devices, and techniques that may work to avoid interaction with smalltooth sawfish and/or enhance the likelihood of successful release of healthy sawfish.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>1.1.15</td>
<td>Minimize mortality by using fishing devices, modifications, and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of hooking them in areas frequented by sawfish, other important sawfish habitats, and in longline fisheries encountering significant numbers of sawfish.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>1.1.16</td>
<td>Monitor trawl fisheries to ensure they do not threaten the viability of the population.</td>
<td>NMFS</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Estimated Cost</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Federal</td>
<td>State & Other</td>
</tr>
<tr>
<td>2</td>
<td>1.1.17</td>
<td>Investigate fishing devices, gear modifications and techniques (physical, electronic, chemical, net configuration, etc) that reduce the likelihood of sawfish capture, improve the chances of sawfish escapement, minimize harm to sawfish and humans from capture, and facilitate successful release of healthy sawfish.</td>
<td>2 years</td>
<td>NMFS</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>1.1.18</td>
<td>Recommend the use of fishing devices, gear modifications and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of capture in areas frequented by sawfish, other important sawfish habitats, and in trawl fisheries encountering significant numbers of sawfish.</td>
<td>2 years</td>
<td>NMFS</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gillnet fisheries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.1.19</td>
<td>Monitor gillnet fisheries to ensure they do not threaten the viability of the population.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>State fishery agencies</td>
</tr>
<tr>
<td>3</td>
<td>1.1.20</td>
<td>Regulate gillnet fisheries in state waters to minimize sawfish bycatch.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>State fishery agencies, Atlantic and Gulf States Fisheries Commissions</td>
</tr>
<tr>
<td>3</td>
<td>1.1.21</td>
<td>Regulate gillnet fisheries in federal waters to minimize sawfish bycatch.</td>
<td>Long-term</td>
<td>NMFS, SAFMC, and MAFMC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1.22</td>
<td>Continue to investigate avenues to reduce the risk of capture, injury, and mortality in gillnet fisheries</td>
<td>Long-term</td>
<td>NMFS</td>
<td>State fishery agencies</td>
</tr>
<tr>
<td>2</td>
<td>1.1.23</td>
<td>Recommend the use of fishing devices, modifications and/or techniques found to be effective at reducing bycatch of smalltooth sawfish and/or mitigating the effects of entanglement in areas frequented by sawfish, other important sawfish habitats, and in gillnet fisheries encountering significant numbers of sawfish.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>State fishery agencies</td>
</tr>
<tr>
<td>2</td>
<td>1.1.24</td>
<td>Continue to minimize gillnet effects by gillnet bans in Florida.</td>
<td>Long-term</td>
<td></td>
<td>FWC</td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Estimated Cost</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>2</td>
<td>1.1.25</td>
<td>Monitor recreational fisheries to ensure they do not threaten the viability of the population.</td>
<td>Long-term</td>
<td>NMFS, ENP</td>
<td>FWC, State fishery agencies</td>
</tr>
<tr>
<td>2</td>
<td>1.1.26</td>
<td>Investigate and, if practical, require devices that reduce the capture, injury, and mortality from recreational fisheries (e.g., corrodbile and circle hooks).</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, MML, State fishery agencies</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Monitor trade to ensure trade in sawfish parts does not threaten the long-term viability of the population.</td>
<td>2 years</td>
<td>NMFS</td>
<td>TOC</td>
</tr>
<tr>
<td>3</td>
<td>1.2.1</td>
<td>Develop a strategy to secure listing of sawfish under Appendix I of CITES.</td>
<td>2 years</td>
<td>NMFS, Dept of Interior, Dept. of State, and NOAA’s Office of International Affairs</td>
<td>TOC</td>
</tr>
<tr>
<td>3</td>
<td>1.2.2</td>
<td>Encourage NOAA’s Office of Law Enforcement to ensure enforcement of prohibitions of illegal sales of smalltooth sawfish on auction outlets, if any.</td>
<td>Long-term</td>
<td>NMFS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2.3</td>
<td>Encourage NOAA’s Office of Law Enforcement to investigate and prosecute persons engaging in interstate commerce of smalltooth sawfish, if any.</td>
<td>Long-term</td>
<td>NMFS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2.4</td>
<td>Monitor the aquarium community and the American Zoo and Aquarium Association to ensure that movement and/or trade in sawfish currently in captivity, or their progeny, does not threaten the long-term viability of the population.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>American Zoo and Aquarium Association, MML</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>Minimize interactions, injury, and mortality through outreach and education.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV-19
<table>
<thead>
<tr>
<th>Priority</th>
<th>Action</th>
<th>Action Description</th>
<th>Duration</th>
<th>Responsible Parties</th>
<th>Estimated Cost</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.3.1</td>
<td>Develop programs and materials to educate the public about smalltooth sawfish status and protections, with a focus on those most likely to encounter this species (e.g. fishermen, divers, boaters).</td>
<td>2 years</td>
<td>NMFS FLMNH, MML</td>
<td>40K 40K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3.2</td>
<td>Develop safe handling and husbandry guidelines for sawfish, and related educational materials.</td>
<td>1 year</td>
<td>NMFS American Zoo and Aquarium Association, MML</td>
<td>15K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.3.3</td>
<td>Develop, distribute, and implement Safe Handling and Release Guidelines for smalltooth sawfish for recreational and commercial fisheries to minimize interactions, injury, and mortality.</td>
<td>Long-term</td>
<td>NMFS FWC, State fishery agencies</td>
<td>10K 10K 10K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.3.4</td>
<td>Improve effective implementation of safe handling and release through information distribution and training seminars associated with recreational and commercial fishing events, trade shows, tackle and bait shops, boating stores and related outlets.</td>
<td>Long-term</td>
<td>NMFS, NOAA's Sea Grant State fishery agencies, Commercial and recreational fishing organizations</td>
<td>15K 15K 15K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>Reduce threats from research efforts.</td>
<td></td>
<td>NMFS State fishery agencies</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4.1</td>
<td>Monitor mortality of the species from both targeted and non-targeted research programs.</td>
<td>Long-term</td>
<td>NMFS State fishery agencies</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4.2</td>
<td>Develop standardized research protocols for authorized smalltooth sawfish researchers to ensure that studies are coordinated, that take for research is minimized and associated harm is minimized, and the cumulative effects are considered.</td>
<td>1 year</td>
<td>NMFS State fishery agencies, MML</td>
<td>20K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4.3</td>
<td>Develop a training course for researchers who handle sawfish to ensure minimization of injury and mortality from research activities.</td>
<td>1 year</td>
<td>NMFS State fishery agencies</td>
<td>20K</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>Develop non-ESA protection measures and a post delisting monitoring plan.</td>
<td></td>
<td>NMFS State fishery agencies</td>
<td>20K</td>
<td></td>
</tr>
<tr>
<td>1.5.1</td>
<td></td>
<td>Develop protective measures with state, local, and other appropriate agencies that will continue after the ESA protections are removed.</td>
<td>1 year</td>
<td>NMFS State fishery agencies</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Implementation Schedule

<table>
<thead>
<tr>
<th>Priority</th>
<th>Action</th>
<th>Action Description</th>
<th>Duration</th>
<th>Responsible Parties</th>
<th>Estimated Cost</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 2</td>
<td>1.5.2</td>
<td>Develop a five-year post-delisting monitoring plan as required by ESA(4)(g).</td>
<td>1 year</td>
<td>NMFS</td>
<td>State fishery agencies</td>
<td>*</td>
</tr>
<tr>
<td>Objective 2</td>
<td>2.1</td>
<td>Protect and/or restore smalltooth sawfish habitats.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1</td>
<td>Conduct surveys throughout the current range of the species to determine the locations of current sawfish potential nursery habitats.</td>
<td>5 years</td>
<td>NMFS</td>
<td>FWC, MML, State fishery agencies</td>
<td>200K 200K 200K</td>
</tr>
<tr>
<td></td>
<td>2.1.2</td>
<td>Determine which habitats, apart from shoreline mangroves, are currently used as nursery areas.</td>
<td>3 years</td>
<td>NMFS</td>
<td>FWC, MML, State fishery agencies</td>
<td>25K 25K 25K</td>
</tr>
<tr>
<td></td>
<td>2.1.3</td>
<td>Construct habitat models based on survey data to identify potential nursery habitats in areas unsurveyed or outside of the current range.</td>
<td>1 year</td>
<td>NMFS</td>
<td>FWC, MML, State fishery agencies</td>
<td>50K</td>
</tr>
<tr>
<td></td>
<td>2.1.4</td>
<td>Document the effect of coastal development on use of nursery habitats by juveniles.</td>
<td>2 years</td>
<td>NMFS</td>
<td>FWC, MML, State fishery agencies</td>
<td>75K 75K</td>
</tr>
<tr>
<td></td>
<td>2.1.5</td>
<td>Estimate the historic distribution of shoreline habitats throughout the core range of smalltooth sawfish.</td>
<td>2 years</td>
<td>NMFS, NOS</td>
<td>FWC, MML, State fishery agencies</td>
<td>40K 40K</td>
</tr>
<tr>
<td></td>
<td>2.1.6</td>
<td>Estimate the proportion of native shoreline habitats at the time of listing compared to historic levels.</td>
<td>1 year</td>
<td>NMFS, NOS</td>
<td>FDEP, other States</td>
<td>20K</td>
</tr>
<tr>
<td></td>
<td>2.1.7</td>
<td>Monitor losses and gains of mangrove shoreline habitat in recovery regions G, H, I, J, and K.</td>
<td>Long-term</td>
<td>NMFS, NOS</td>
<td>FDEP</td>
<td>20K 20K 20K</td>
</tr>
</tbody>
</table>
Table 2 Implementation Schedule

<table>
<thead>
<tr>
<th>Priority</th>
<th>Action</th>
<th>Action Description</th>
<th>Duration</th>
<th>Responsible Parties</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1.8</td>
<td>Restore mangrove shoreline habitats in recovery regions where levels are insufficient</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>2.1.9</td>
<td>Ensure that appropriate regulations are in place to protect (and potentially recover) mangrove shoreline habitats in recovery regions G - K.</td>
<td>Long-term</td>
<td>COE, EPA</td>
<td>20K</td>
</tr>
<tr>
<td>1</td>
<td>2.1.10</td>
<td>Monitor losses and gains of nursery habitats, apart from shoreline mangroves, in all recovery regions.</td>
<td>Long-term</td>
<td>COE, EPA</td>
<td>20K</td>
</tr>
<tr>
<td>3</td>
<td>2.1.11</td>
<td>Restore non-mangrove nursery habitats in all recovery regions.</td>
<td>Long-term</td>
<td>COE, EPA</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>2.1.12</td>
<td>Ensure that appropriate regulations are in place to protect (and potentially recover) non-mangrove nursery habitats in all recovery regions.</td>
<td>Long-term</td>
<td>COE, EPA</td>
<td>TBD</td>
</tr>
<tr>
<td>2</td>
<td>2.2.1</td>
<td>Minimize the disruption of natural/historic freshwater flow regimes (including timing, quality, and quantity) and maintain or restore water quality.</td>
<td>3 years</td>
<td>NMFS, COE, MML, FWC, WMDS</td>
<td>125K</td>
</tr>
<tr>
<td>2</td>
<td>2.2.2</td>
<td>Monitor the salinity and other water quality preferences of juveniles in the field.</td>
<td>3 years</td>
<td>NMFS, COE, MML, FWC, WMDS</td>
<td>100K</td>
</tr>
<tr>
<td>1</td>
<td>2.2.3</td>
<td>Monitor water flow into, and salinity of, nursery habitats in all recovery regions.</td>
<td>Long-term</td>
<td>COE, WMDS, FDEP, others</td>
<td>10K</td>
</tr>
<tr>
<td>1</td>
<td>2.2.4</td>
<td>Evaluate whether regulations are in place to maintain appropriate water quality in sawfish nursery habitats.</td>
<td>Long-term</td>
<td>NMFS, EPA, WMDS, FDEP, others</td>
<td>*</td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Estimated Cost</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>2.3.1</td>
<td>Conduct surveys throughout the current range of smalltooth sawfish to determine the distribution of adult smalltooth sawfish and identify habitats of aggregation or local abundance.</td>
<td>2 years</td>
<td>NMFS</td>
<td>200K 200K</td>
</tr>
<tr>
<td>2</td>
<td>2.3.2</td>
<td>Investigate short-term movement patterns of adult sawfish to provide information on habitat use patterns.</td>
<td>3 years</td>
<td>NMFS</td>
<td>100K 100K 100K</td>
</tr>
<tr>
<td>3</td>
<td>2.3.3</td>
<td>Investigate the seasonal migrations of adults along the US east coast and in the Gulf of Mexico, including documenting the temperature tolerances that may drive these patterns.</td>
<td>3 years</td>
<td>NMFS</td>
<td>75K 75K 75K</td>
</tr>
<tr>
<td>2</td>
<td>2.3.4</td>
<td>Investigate seasonal patterns of occurrence and habitat use of adults.</td>
<td>2 years</td>
<td>NMFS</td>
<td>200K 200K</td>
</tr>
<tr>
<td>3</td>
<td>2.3.5</td>
<td>Construct habitat-based movement models to identify seasonal changes in crucial habitat areas for adults.</td>
<td>1 year (FY10)</td>
<td>NMFS</td>
<td>75K</td>
</tr>
<tr>
<td>2</td>
<td>2.3.6</td>
<td>Monitor abundance of adult smalltooth sawfish in aggregation areas.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, MML</td>
</tr>
<tr>
<td>2</td>
<td>2.3.7</td>
<td>Monitor changes in habitat and environmental parameters in aggregation areas.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, MML</td>
</tr>
<tr>
<td>3</td>
<td>2.3.8</td>
<td>Restore degraded habitats in aggregation area, if determined necessary for recovery.</td>
<td>Long-term</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>1</td>
<td>2.3.9</td>
<td>Ensure appropriate regulations are in place to protect adult aggregation habitats.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, MML</td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Federal</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Investigate the relationship (movements) between the U.S. DPS of smalltooth sawfish and populations in surrounding countries and coordinate conservation and recovery efforts to ensure they do not hinder the U.S. recovery efforts.</td>
<td>3 years</td>
<td>NMFS</td>
<td>University or Research Org</td>
</tr>
<tr>
<td>3</td>
<td>3.1.1</td>
<td>Conduct genetic comparisons between US DPS and populations in surrounding countries.</td>
<td>3 years</td>
<td>NMFS</td>
<td>University or Research Org</td>
</tr>
<tr>
<td>3</td>
<td>3.1.2</td>
<td>Establish and continue tagging studies (Gulf of Mexico and Caribbean).</td>
<td>5 years</td>
<td>NMFS</td>
<td>University or Research Org</td>
</tr>
<tr>
<td>3</td>
<td>3.1.3</td>
<td>Encourage protection of smalltooth sawfish and promote the reduction of sawfish bycatch in neighboring countries</td>
<td>2 years</td>
<td>Dept of State, NOAA</td>
<td>TBD</td>
</tr>
<tr>
<td>2</td>
<td>3.2.1</td>
<td>Assess the east and west coasts of Florida to determine the most appropriate location and timing of surveys for adult smalltooth sawfish.</td>
<td>2 years</td>
<td>NMFS</td>
<td>FWC, MML</td>
</tr>
<tr>
<td>2</td>
<td>3.2.2</td>
<td>Evaluate fishery observer programs to determine their suitability to act as surveys of relative abundance of adult smalltooth sawfish.</td>
<td>1 year</td>
<td>NMFS</td>
<td>State fishery agencies</td>
</tr>
<tr>
<td>2</td>
<td>3.2.3</td>
<td>Evaluate state and federal fishery-independent monitoring programs to determine their suitability to act as surveys of relative abundance of adult smalltooth sawfish.</td>
<td>2 years</td>
<td>NMFS</td>
<td>State Fisheries Agencies, TPWD</td>
</tr>
<tr>
<td>1</td>
<td>3.2.4</td>
<td>Conduct regular surveys to determine the relative abundance of smalltooth sawfish off the east and west coasts of Florida.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>FWC, MML</td>
</tr>
<tr>
<td>Priority</td>
<td>Action</td>
<td>Action Description</td>
<td>Duration</td>
<td>Responsible Parties</td>
<td>Estimated Cost</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>--------------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>3.2.5</td>
<td>Analyze annual relative abundance data for adult smalltooth sawfish and determine if it meets the criteria in Objective 3.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>5K 5K 5K</td>
</tr>
<tr>
<td>2</td>
<td>3.2.6</td>
<td>Conduct tagging studies, potentially using satellite and/or archival technology, to study seasonal migrations along the US east coast and within the Gulf of Mexico.</td>
<td>5 years</td>
<td>NMFS</td>
<td>MML, State Agencies 100K 100K 100K</td>
</tr>
<tr>
<td>2</td>
<td>3.2.7</td>
<td>Maintain an effective public reporting system with outreach efforts throughout the historic range, with special efforts focused on the north central Gulf of Mexico, Georgia, South Carolina and North Carolina.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>MML, FMNH, others 100K 100K 100K</td>
</tr>
<tr>
<td>2</td>
<td>3.2.8</td>
<td>Access research survey and fishery independent monitoring datasets to obtain records of adult smalltooth sawfish in the north central Gulf of Mexico, Georgia, South Carolina and North Carolina.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>10K 10K 10K</td>
</tr>
<tr>
<td></td>
<td>3.3.1</td>
<td>Collect life history data, including age, growth, reproductive and natural mortality.</td>
<td>3 years</td>
<td>NMFS</td>
<td>State fishery agencies, MML 20K 20K 20K</td>
</tr>
<tr>
<td>3</td>
<td>3.3.2</td>
<td>Determine movement rates by size class between recovery regions.</td>
<td>3 years</td>
<td>NMFS</td>
<td>FWC, MML 150K 150K 150K</td>
</tr>
<tr>
<td></td>
<td>3.3.3</td>
<td>Collect other biological or ecological data as required for the PVA.</td>
<td>1 year</td>
<td>NMFS</td>
<td>MML 25K</td>
</tr>
<tr>
<td>1</td>
<td>3.3.4</td>
<td>Collect information on catches and mortality in recreational and commercial fisheries for use in the PVA.</td>
<td>3 years</td>
<td>NMFS</td>
<td>MML, State Agencies 150K 150K 150K</td>
</tr>
<tr>
<td>2</td>
<td>3.3.5</td>
<td>Build a spatially structured PVA model for smalltooth sawfish</td>
<td>2 years (Start FY07)</td>
<td>NMFS</td>
<td>MML 50K 50K</td>
</tr>
</tbody>
</table>
Table 2 Implementation Schedule

<table>
<thead>
<tr>
<th>Priority</th>
<th>Action</th>
<th>Action Description</th>
<th>Duration</th>
<th>Responsible Parties</th>
<th>Federal</th>
<th>State & Other</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.3.6</td>
<td>Obtain independent international scientific review of the PVA model and analysis</td>
<td>1 year</td>
<td>NMFS</td>
<td>MML, TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4</td>
<td>Determine that sufficient numbers of juvenile smalltooth sawfish exist to ensure recovery and that sufficient nursery areas are occupied to protect against negative stochastic events.</td>
<td></td>
<td>NMFS FWC, MML</td>
<td>250K</td>
<td>250K</td>
<td>250K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4.1</td>
<td>Determine the habitat use patterns, site fidelity and movement patterns (including seasonal) of juveniles of all sizes in nursery habitats.</td>
<td>3 years</td>
<td>NMFS FWC, MML</td>
<td>100K</td>
<td>100K</td>
<td>100K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4.2</td>
<td>Determine the carrying capacity of nursery habitats in each of the recovery regions used to meet criteria in Objective 3.</td>
<td>3 years</td>
<td>NMFS FWC, MML</td>
<td>10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4.3</td>
<td>Determine the most appropriate time of year to carry out surveys for juvenile smalltooth sawfish in each of the Recovery Regions used to meet the criteria in Objective 3.</td>
<td>1 year (Start FY08)</td>
<td>NMFS FWC</td>
<td>20K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.4.4</td>
<td>Compare efficiency of different types of gear (e.g. gillnets, seine nets) to identify most appropriate type to monitor juvenile smalltooth sawfish.</td>
<td>1 year</td>
<td>NMFS FWC, MML</td>
<td>15K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.4.5</td>
<td>Evaluate state and Federal agency fishery-independent monitoring programs for their potential to act as measures of relative abundance.</td>
<td>1 year</td>
<td>NMFS FWC, MML</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4.6</td>
<td>Conduct annual surveys to determine the relative abundance of juvenile sawfish numbers in nursery habitats in each of the recovery regions used to meet criteria in Objective 3.</td>
<td>Long-term</td>
<td>NMFS FWC, MML, State fishery agencies</td>
<td>5K</td>
<td>5K</td>
<td>5K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.4.7</td>
<td>Analyze trends in annual relative abundance of juvenile sawfish and determine if the annual rate of increase meets the conditions set in criteria.</td>
<td>Long-term</td>
<td>NMFS</td>
<td>5K</td>
<td>5K</td>
<td>5K</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* No separate, direct costs (NMFS staff)
V. Literature Cited

Burgess, G. Personal Communication.

Carlson. Personal Communication.

Cerkleski, R.F. 2000. Personal communication. Curator for the Key West Aquarium, Key West, Florida.

Faria, V. Personal Communication.

Gregg. Personal Communication.

McDavitt, M.T. Personal Communication.

VI. APPENDICES
APPENDIX A

Listing Notice For *Pristis pectinata*
Federal Register 68(62): 15674
APPENDIX B

Draft Sawfish Handling and Release Guidelines
APPENDIX C

International, U.S. Federal, and State Authorities or Laws